題目列表(包括答案和解析)
如圖所示的長方體中,底面是邊長為的正方形,為與的交點,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得證明
(3)因為∴為面的法向量.∵,,
∴為平面的法向量.∴利用法向量的夾角公式,,
∴與的夾角為,即二面角的大小為.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點、,
∴,又點,,∴
∴,且與不共線,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴為面的法向量.∵,,
∴為平面的法向量.∴,
∴與的夾角為,即二面角的大小為
如圖,在三棱錐中,平面平面,,,,為中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因為,為中點,所以
而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系得,,,,,,
故平面的法向量而,故點B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,為中點,所以
而平面平面,所以平面,
再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系,得,,,,
,,故平面的法向量
而,故點B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
如圖,已知向量,可構(gòu)成空間向量的一個基底,若,在向量已有的運算法則的基礎(chǔ)上,新定義一種運算,顯然的結(jié)果仍為一向量,記作.
1、求證:向量為平面的法向量;
2、求證:以為邊的平行四邊形的面積等于;
將四邊形按向量平移,得到一個平行六面體,試判斷平行六面體的體積與的大。
如圖,已知向量,可構(gòu)成空間向量的一個基底,若
,在向量已有的運算法則的基礎(chǔ)上,新定義一種運算,顯然的結(jié)果仍為一向量,記作.
求證:向量為平面的法向量;
求證:以為邊的平行四邊形的面積等于;
將四邊形按向量平移,得到一個平行六面體,試判斷平行六面體的體積與的大小.
(理科)平面中,點坐標(biāo)為,點坐標(biāo)為,點坐標(biāo)為.若向量,且為平面的法向量,則= .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com