答案:(1)取AC的中點H.連MH.則MH//PA.所以MH⊥平面ABCD.過H作HN⊥AD于N.連MN.由三垂線定理可得MN⊥AD.則∠MNH就為所求的二面角的平面角.------2分 查看更多

 

題目列表(包括答案和解析)

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當內容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內,過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側面AC1;得BF∥EG,BF、EG確定一個平面,交側面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

如圖所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC與BD交于E點,BD=2,BC=CD=
2

(1)取PD的中點F,求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐A-BCDE中,底面BCDE為矩形,AB=AC,BC=2,CD=1,并且側面ABC⊥底面BCDE.
(1)取CD的中點為F,AE的中點為G,證明:FG∥面ABC;
(2)試在線段BC上確定點M,使得AE⊥DM,并加以證明.

查看答案和解析>>

(12分)

學校欲在操場邊上一直角三角形空地ABC上種植草坪,并需鋪設一根水管EF(E在AC上,F(xiàn)在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中點,為確保灌溉的效果,鋪設時要求∠EDF=60°,F(xiàn)有兩種方案可供參考。甲方案:取AC的中點E鋪設水管;乙方案:取AB的中點F鋪設水管。

(1)比較甲乙兩種方案,哪一種方案更合理(EF的長較小的合理);

(2)學校研究小組通過研究得出:無論D在BC的什么位置,總存在E,F(xiàn)兩點,使△DEF為正三角形。試證明該結論的正確性。

 

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側面AC1

(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當內容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

(1)證明:在截面A1EC內,過E作EG⊥A1C,G是垂足.
①∵______
∴EG⊥側面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵______
∴BF⊥側面AC1;得BF∥EG,BF、EG確定一個平面,交側面AC1于FG.
③∵______
∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵______
∴FG∥AA1,△AA1C∽△FGC,
⑤∵______
,即

查看答案和解析>>


同步練習冊答案