③若.則必存在實數(shù).使 查看更多

 

題目列表(包括答案和解析)

若存在x0∈R,使f(x0)=x0成立,則稱點(x0,x0)為函數(shù)f(x)的不動點.

(Ⅰ)已知函數(shù)f(x)=ax2+bx-b(a≠0)有不動點(1,1)和(-3,-3),求a、b的值;

(Ⅱ)若對于任意實數(shù)b,函數(shù)f(x)=ax2+bx-b總有兩個相異的不動點,求實數(shù)a的取值范圍;

(Ⅲ)若定義在實數(shù)集R上的奇函數(shù)g(x)存在(有限的)n個不動點,求證:n必為奇數(shù).

查看答案和解析>>

對于函數(shù),若存在 ,使成立,則稱點為函數(shù)的不動點。

(1)已知函數(shù)有不動點(1,1)和(-3,-3)求的值;

(2)若對于任意實數(shù),函數(shù)總有兩個相異的不動點,求 的取值范圍;

(3)若定義在實數(shù)集R上的奇函數(shù)存在(有限的) 個不動點,求證:必為奇數(shù)。

查看答案和解析>>

對于函數(shù),若存在 ,使成立,則稱點為函數(shù)的不動點。
(1)已知函數(shù)有不動點(1,1)和(-3,-3)求的值;
(2)若對于任意實數(shù),函數(shù)總有兩個相異的不動點,求 的取值范圍;
(3)若定義在實數(shù)集R上的奇函數(shù)存在(有限的) 個不動點,求證:必為奇數(shù)。

查看答案和解析>>

已知函數(shù),且無實根,則下列命題中:
(1)方程一定無實根;
(2)若>0,則不等式對一切實數(shù)都成立;
(3)若<0,則必存在實數(shù),使得;
(4)若,則不等式對一切都成立。
其中正確命題的序號有           (寫出所有真命題的序號)

查看答案和解析>>

對于非空實數(shù)集,記.設非空實數(shù)集合,若時,則. 現(xiàn)給出以下命題:

①對于任意給定符合題設條件的集合,必有;

②對于任意給定符合題設條件的集合,必有

③對于任意給定符合題設條件的集合,必有

④對于任意給定符合題設條件的集合,必存在常數(shù),使得對任意的,恒有,

其中正確的命題是                .(寫出所有正確命題的序號)

 

查看答案和解析>>

一、選擇題      ACCBC  BBCCD

 

二、填空題:,,,,,①②④

 

18(Ⅰ)由題意“”表示“答完題,第一題答對,第二題答錯;或第一題答對,第二題也答對” 此時概率                 …6分

(Ⅱ)P()==,    P()==,………9分

-3

-1

1

 

3

P()== ,     P()==

的分布列為 

                                                   12分

  ……14分                                               

19解:(Ⅰ) 連接于點,連接

中,分別為中點,

平面,平面,平面.   …………(6分)

  (Ⅱ) 法一:過,由三垂線定理得,

故∠為二面角的平面角.    ……………………………………(9分)

 令,則,又

  在中,,

   解得

時,二面角的正弦值為.     ………………(14分)

法二:設,取中點,連接

為坐標原點建立空間直角坐標系,如右圖所示:

,

設平面的法向量為,平面的法向量為,

則有,,即,

,則

,解得

即當時,二面角的正弦值為.  …………………(14分)

 

20.(1)   ;

(2)軌跡方程為

(1)當時,軌跡方程為),表示拋物線弧段。

(2)當時,軌跡方程為,

    A)當表示橢圓弧段;      B)當時表示雙曲線弧段。

21.   Ⅰ)   …………(2分)

,則

時,;當

故有極大值…………(4分)

Ⅱ)∵=a+,x∈(0,e),∈[,+∞

   (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

    ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分

   (2)若a<-, >0a+>0,即0<x<-

    由a+<0,即-<x≤e.

    ∴f(x)=f(-)=-1+ln(-).

    令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

    即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分

   Ⅲ)由Ⅰ)結論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.

    令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

   (1)當0<x<2時,有g(x)≥x-(1+)(x-1)-=>0.

   (2)當x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

                   =.

    ∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=

    綜合(1)、(2)知,當x>0時,g(x)>0,即|f(x)|>.

    故原方程沒有實解.                       ………………………………16分

 

22.證明:(I)

    ①當,                       …………2分

②假設,

時不等式也成立,                                                               …………4分

   (II)由

                                                                                              …………5分

   

                …………7分

                            …………8分

   (III),

,                                             …………10分

的等比數(shù)列,…………12分

                                   …………14分

 

 


同步練習冊答案