(1)試確定點(diǎn)B的位置.使, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)“5•12”汶川大地震中,受災(zāi)面積大,傷亡慘重,醫(yī)療隊(duì)到達(dá)后,都會(huì)選擇一個(gè)合理的位置,使傷員能在最短的時(shí)間內(nèi)得到救治.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形ABCD的兩個(gè)頂點(diǎn)A,B及CD的中點(diǎn)P處,AB=10km,BC=5km,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個(gè)醫(yī)療站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為y.
(1)設(shè)∠BAO=θ(rad),將y表示為θ的函數(shù);
(2)試?yán)茫?)的函數(shù)關(guān)系式確定醫(yī)療站的位置,使三個(gè)鄉(xiāng)鎮(zhèn)到醫(yī)療站的距離之和最短.

查看答案和解析>>

“5•12”汶川大地震中,受災(zāi)面積大,傷亡慘重,醫(yī)療隊(duì)到達(dá)后,都會(huì)選擇一個(gè)合理的位置,使傷員能在最短的時(shí)間內(nèi)得到救治.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形ABCD的兩個(gè)頂點(diǎn)A,B及CD的中點(diǎn)P處,AB=10km,BC=5km,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個(gè)醫(yī)療站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為y.
(1)設(shè)∠BAO=θ(rad),將y表示為θ的函數(shù);
(2)試?yán)茫?)的函數(shù)關(guān)系式確定醫(yī)療站的位置,使三個(gè)鄉(xiāng)鎮(zhèn)到醫(yī)療站的距離之和最短.

查看答案和解析>>

“5•12”汶川大地震中,受災(zāi)面積大,傷亡慘重,醫(yī)療隊(duì)到達(dá)后,都會(huì)選擇一個(gè)合理的位置,使傷員能在最短的時(shí)間內(nèi)得到救治.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形ABCD的兩個(gè)頂點(diǎn)A,B及CD的中點(diǎn)P處,AB=10km,BC=5km,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個(gè)醫(yī)療站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為y.
(1)設(shè)∠BAO=θ(rad),將y表示為θ的函數(shù);
(2)試?yán)茫?)的函數(shù)關(guān)系式確定醫(yī)療站的位置,使三個(gè)鄉(xiāng)鎮(zhèn)到醫(yī)療站的距離之和最短.

查看答案和解析>>

在棱長(zhǎng)AB=AD=2,AA1=3的長(zhǎng)方體AC1中,點(diǎn)E是平面BCC1B1上動(dòng)點(diǎn),點(diǎn)F是CD的中點(diǎn).

   (Ⅰ)試確定E的位置,使D1E⊥平面AB1F;

   (Ⅱ)求二面角B1—AF—B的大小.

查看答案和解析>>

在棱長(zhǎng)AB=AD=2,AA1=3的長(zhǎng)方體AC1中,點(diǎn)E是平面BCC1B1上動(dòng)點(diǎn),點(diǎn)F是CD的中點(diǎn).
(Ⅰ)試確定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求二面角B1—AF—B的大小.

查看答案和解析>>

一、選擇題      ACCBC  BBCCD

 

二、填空題:,,,,,①②④

 

18(Ⅰ)由題意“”表示“答完題,第一題答對(duì),第二題答錯(cuò);或第一題答對(duì),第二題也答對(duì)” 此時(shí)概率                 …6分

(Ⅱ)P()==,    P()==,………9分

-3

-1

1

 

3

P()== ,     P()==

的分布列為 

                                                   12分

  ……14分                                               

19解:(Ⅰ) 連接于點(diǎn),連接

中,分別為中點(diǎn),

平面平面,平面.   …………(6分)

  (Ⅱ) 法一:過,由三垂線定理得,

故∠為二面角的平面角.    ……………………………………(9分)

 令,則,又,

  在中,,

   解得。

當(dāng)時(shí),二面角的正弦值為.     ………………(14分)

法二:設(shè),取中點(diǎn),連接

為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如右圖所示:

,

設(shè)平面的法向量為,平面的法向量為,

則有,,即,,

設(shè),則

,解得

即當(dāng)時(shí),二面角的正弦值為.  …………………(14分)

 

20.(1)   ;

(2)軌跡方程為

(1)當(dāng)時(shí),軌跡方程為),表示拋物線弧段。

(2)當(dāng)時(shí),軌跡方程為,

    A)當(dāng)表示橢圓弧段;      B)當(dāng)時(shí)表示雙曲線弧段。

21.   Ⅰ)   …………(2分)

,則

當(dāng)時(shí),;當(dāng)時(shí)

故有極大值…………(4分)

Ⅱ)∵=a+,x∈(0,e),∈[,+∞

   (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

    ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分

   (2)若a<-, >0a+>0,即0<x<-

    由a+<0,即-<x≤e.

    ∴f(x)=f(-)=-1+ln(-).

    令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

    即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分

   Ⅲ)由Ⅰ)結(jié)論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.

    令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

   (1)當(dāng)0<x<2時(shí),有g(shù)(x)≥x-(1+)(x-1)-=>0.

   (2)當(dāng)x≥2時(shí),g′(x)=1-[(-)lnx+(1+)?]=

                   =.

    ∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=

    綜合(1)、(2)知,當(dāng)x>0時(shí),g(x)>0,即|f(x)|>.

    故原方程沒有實(shí)解.                       ………………………………16分

 

22.證明:(I)

    ①當(dāng),                       …………2分

②假設(shè),

時(shí)不等式也成立,                                                               …………4分

   (II)由,

                                                                                              …………5分

   

                …………7分

                            …………8分

   (III)

,                                             …………10分

的等比數(shù)列,…………12分

                                   …………14分

 

 


同步練習(xí)冊(cè)答案