故.-----------------13分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

   某種家用電器每臺的銷售利潤與該電器的無故障使用時間 (單位:年)有關(guān). 若,則銷售利潤為元;若,則銷售利潤為元;若,則銷售利潤為元.設(shè)每臺該種電器的無故障使用時間這三種情況發(fā)生的概率分別為,,,叉知,是方程的兩個根,且   (1)求,,的值;  (2)記表示銷售兩臺這種家用電器的銷售利潤總和,求的期望.

查看答案和解析>>

((本小題共13分)

若數(shù)列滿足,數(shù)列數(shù)列,記=.

(Ⅰ)寫出一個滿足,且〉0的數(shù)列;

(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5

(Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

 

 

查看答案和解析>>

(本小題滿分13分)某單位有三輛汽車參加某種事故保險,單位年初向保險公司

繳納每輛900元的保險金.對在一年內(nèi)發(fā)生此種事故的每輛汽車,單位獲9000元

的賠償(假設(shè)每輛車最多只賠償一次)。設(shè)這三輛車在一年內(nèi)發(fā)生此種事故的概率

分別為且各車是否發(fā)生事故相互獨立,求一年內(nèi)該單位在此保險中:

(1)獲賠的概率;(4分)

(2)獲賠金額的分別列與期望。(9分)

 

查看答案和解析>>

(本小題滿分13分)某單位有三輛汽車參加某種事故保險,單位年初向保險公司繳納每輛900元的保險金.對在一年內(nèi)發(fā)生此種事故的每輛汽車,單位獲9000元的賠償(假設(shè)每輛車最多只賠償一次)。設(shè)這三輛車在一年內(nèi)發(fā)生此種事故的概率分別為且各車是否發(fā)生事故相互獨立,求一年內(nèi)該單位在此保險中:
(1)獲賠的概率;(4分)
(2)獲賠金額的分別列與期望。(9分)

查看答案和解析>>

(本小題滿分13分)某單位有三輛汽車參加某種事故保險,單位年初向保險公司

繳納每輛900元的保險金.對在一年內(nèi)發(fā)生此種事故的每輛汽車,單位獲9000元

的賠償(假設(shè)每輛車最多只賠償一次)。設(shè)這三輛車在一年內(nèi)發(fā)生此種事故的概率

分別為且各車是否發(fā)生事故相互獨立,求一年內(nèi)該單位在此保險中:

(1)獲賠的概率;

(2)獲賠金額的分別列與期望。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

 

 

 

 

 

 

 

 

 

 

二、填空題:(本大題共5個小題,每小題5分,共25分,)

11.    12.     13.    14.       15.

 

三、解答題:


同步練習(xí)冊答案