③若m∥α.n∥α.則m∥n, ④若α∥β.β∥γ.m⊥α..則m⊥γ 其中正確命題的序號(hào)是: (A)①和② ③和④ (D)①和④ 查看更多

 

題目列表(包括答案和解析)

8、α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號(hào)是
①②③

①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號(hào)是______
①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若αβ且βγ,則αγ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號(hào)是________
①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

7、設(shè)m,n是空間兩條不同直線,α,β是空間兩個(gè)不同平面,則下列命題的正確的是( 。

查看答案和解析>>

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)當(dāng)m=n=2011時(shí),記f(x)=a0+a1x+a2x2+…+a2011x2011,求a0-a1+a2-…-a2011;
(Ⅱ)若f(x)展開式中x的系數(shù)是20,則當(dāng)m、n變化時(shí),試求x2系數(shù)的最小值.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時(shí),函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對(duì)立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點(diǎn),連結(jié)DO。

∵在△AC中,OD均為中點(diǎn),

ADO   …………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長(zhǎng)為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則                  O.       =

A平面BD,

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

          令y = -1,解得m = (,-1,0)

          二面角DBC的余弦值為cos<n , m>=

    ∴二面角DBC的大小為arc cos          …………12分

    20、解: 對(duì)函數(shù)求導(dǎo)得: ……………2分

    (Ⅰ)當(dāng)時(shí),                   

    解得

      解得

    所以, 單調(diào)增區(qū)間為,

    單調(diào)減區(qū)間為(-1,1)                                    ……………5分

    (Ⅱ) 令,即,解得     ………… 6分

    時(shí),列表得:

     

    x

    1

    +

    0

    0

    +

    極大值

    極小值

    ……………8分

    對(duì)于時(shí),因?yàn)?sub>,所以,

    >0                                                    …………   10 分

    對(duì)于時(shí),由表可知函數(shù)在時(shí)取得最小值

    所以,當(dāng)時(shí),                              

    由題意,不等式對(duì)恒成立,

    所以得,解得                          ……………12分

    21、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

    離心率為的橢圓

    設(shè)橢圓的長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c,

    ,∴點(diǎn)在x軸上,且,則3,

    解之得:,     

    ∴坐標(biāo)原點(diǎn)為橢圓的對(duì)稱中心 

    ∴動(dòng)點(diǎn)M的軌跡方程為:                 …………    4分

    (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                         ………… 5分

    , 

         …………  6分

    ,K(2,0),,

    ,

     

    解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

    (Ⅲ)設(shè),由知, 

    直線的斜率為                …………    10分

    當(dāng)時(shí),;

    當(dāng)時(shí),,

    時(shí)取“=”)或時(shí)取“=”),

                                    

    綜上所述                         …………  12分  

    22、(I)解:方程的兩個(gè)根為,

    當(dāng)時(shí),,所以;

    當(dāng)時(shí),,,所以

    當(dāng)時(shí),,,所以時(shí);

    當(dāng)時(shí),,,所以.    …………  4分

    (II)解:

    .                        …………  8分

    (III)證明:,

    所以

    .                       …………  9分

    當(dāng)時(shí),

    ,

                                             …………  11分

    同時(shí),

    .                                    …………  13分

    綜上,當(dāng)時(shí),.                     …………  14分

     


    同步練習(xí)冊(cè)答案