題目列表(包括答案和解析)
(17) (本小題滿分12分)在△ABC中,BC=2,,.
(Ⅰ)求AB的值;w.w.(Ⅱ)求的值.
17(本小題滿分12分)
設(shè)等差數(shù)列滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求的前項(xiàng)和及使得最大的序號(hào)的值。
(本小題滿分12分)
已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)
(Ⅰ)(Ⅰ)求C的離心率;
(Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過(guò)A、B、D三點(diǎn)的圓與x軸相切。
(本小題滿分12分)
已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)
(Ⅰ)(Ⅰ)求C的離心率;
(Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過(guò)A、B、D三點(diǎn)的圓與x軸相切。
(本小題滿分12分)某港口海水的深度(米)是時(shí)間(時(shí))()的函數(shù),記為:
已知某日海水深度的數(shù)據(jù)如下:
(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
一、1 B 2 D
二、13、3 14、-160 15、 16、
三、17、解: (1) …… 3分
的最小正周期為 ………………… 5分
(2) , ………………… 7分
………………… 10分
………………… 11分
當(dāng)時(shí),函數(shù)的最大值為1,最小值 ………… 12分
18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對(duì)立事件概率公式
得:
即這箱產(chǎn)品被用戶拒絕接收的概率為 ………… 6分
(II)
………… 10分
1
2
3
P
…………11分
∴ E= …………12分
19、解法一:
(Ⅰ)連結(jié)B
∵在△AC中,O、D均為中點(diǎn),
∴A∥DO …………………………2分
∵A平面BD,DO平面BD,
∴A∥平面BD!4分
(Ⅱ)設(shè)正三棱柱底面邊長(zhǎng)為2,則DC = 1。
∵∠DC = 60°,∴C= 。
作DE⊥BC于E。
∵平面BC⊥平面ABC,
∴DE⊥平面BC
作EF⊥B于F,連結(jié)DF,則 DF⊥B
∴∠DFE是二面角D-B-C的平面角……………………………………8分
在Rt△DEC中,DE=
在Rt△BFE中,EF = BE?sin
∴在Rt△DEF中,tan∠DFE =
∴二面角D-B-C的大小為arctan………………12分
解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,
設(shè)| AD | = 1∵∠DC =60°∴| C| = 。
則A(1,0,0),B(0,,0),C(-1,0,0),
(1,0), ,
(Ⅰ)連結(jié)C交B于O是C的中點(diǎn),連結(jié)DO,則 O. =
∵A平面BD,
∴A∥平面BD.……………………………………………………………4分
(Ⅱ)=(-1,0,),
設(shè)平面BD的法向量為n = ( x , y , z ),則
即 則有= 0令z = 1
則n = (,0,1)…………………………………………………………8分
設(shè)平面BC的法向量為m = ( x′ ,y′,z′)
|