根據(jù)上圖.試推測曲線的“上夾線 的方程.并給出證明. 查看更多

 

題目列表(包括答案和解析)

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

⑴已知函數(shù).求證:為曲線的“上夾線”.

⑵觀察下圖:

           

    根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

 

查看答案和解析>>

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意xR都有. 則稱直線l為曲線S的“上夾線”.
⑴已知函數(shù).求證:為曲線的“上夾線”.
⑵觀察下圖:
          
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點(diǎn);

② 對任意x∈R都有. 則稱直線l為曲線S的“上夾線”.

(1)已知函數(shù).求證:為曲線的“上夾線”.

(2)觀察下圖:

       根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數(shù)f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:
精英家教網(wǎng)
根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.

查看答案和解析>>

設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數(shù)f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.

查看答案和解析>>

一.選擇題:DBBAC DBDBD

解析:1:由sinx>cosx得cosx-sinx<0, 即cos2x<0,所以:+kπ<2x<+kπ,選D.

 

2:∵復(fù)數(shù)3-i的一個輻角為-π/6,對應(yīng)的向量按順時針方向旋轉(zhuǎn)π/3,

所得向量對應(yīng)的輻角為-π/2,此時復(fù)數(shù)應(yīng)為純虛數(shù),對照各選擇項,選(B)。

3:由代入選擇支檢驗(yàn)被排除;又由,被排除.故選.

4:依題意有,      ①                 ②

由①2-②×2得,,解得

又由,得,所以不合題意。故選A。

5:令,這兩個方程的曲線交點(diǎn)的個數(shù)就是原方程實(shí)數(shù)解的個數(shù).由于直線的斜率為,又所以僅當(dāng)時,兩圖象有交點(diǎn).由函數(shù)的周期性,把閉區(qū)間分成

個區(qū)間,在每個區(qū)間上,兩圖象都有兩個交點(diǎn),注意到原點(diǎn)多計一次,故實(shí)際交點(diǎn)有個.即原方程有63個實(shí)數(shù)解.故選.

6:連接BE、CE則四棱錐E-ABCD的體積VE-ABCD=×3×3×2=6,又整個幾何體大于部分的體積,所求幾何體的體積V> VE-ABCD,選(D)

  • 8:在同一直角坐標(biāo)系中,作出函數(shù)

    的圖象和直線,它們相交于(-1,1)

    和(1,1)兩點(diǎn),由,得.

    9:把各選項分別代入條件驗(yàn)算,易知B項滿足條件,且的值最小,故選B。

    10:P滿足|MP|=|NP|即P是MN的中垂線上的點(diǎn),P點(diǎn)存在即中垂線與曲線有交點(diǎn)。MN的中垂線方程為2x+y+3=0,與中垂線有交點(diǎn)的曲線才存在點(diǎn)P滿足|MP|=|NP|,直線4x+2y-1=0與2x+y+3=0平行,故排除(A)、(C),

    又由△=0,有唯一交點(diǎn)P滿足|MP|=|NP|,故選(D)。

    二.填空題:11、; 12、; 13、;14、;15、2;

    解析: 11:由題設(shè),此人猜中某一場的概率為,且猜中每場比賽結(jié)果的事件為相互獨(dú)立事件,故某人全部猜中即獲得特等獎的概率為。

    12:分類求和,得

        ,故應(yīng)填

    13:依拋物線的對稱性可知,大圓的圓心在y軸上,并且圓與拋物線切于拋物線的頂點(diǎn),從而可設(shè)大圓的方程為 

        由  ,消去x,得        (*)

    解出

        要使(*)式有且只有一個實(shí)數(shù)根,只要且只需要

        再結(jié)合半徑,故應(yīng)填

    14.解:直線 化為直角坐標(biāo)方程是2x+y-1=0; 圓

    圓心(1,0)到直線2x+y-1=0的距離是

    15.(略)

    三.解答題:

    16、解:(Ⅰ)由, ,

     .-----------------------6分

    (Ⅱ) 原式=  

     -----------------------12分

     

    17、 (Ⅰ)證明:∵函數(shù)是奇函數(shù)  ∴

    ∴函數(shù)不是上的增函數(shù)--------------------------------2分

    又函數(shù)上單調(diào)  ∴函數(shù)上的單調(diào)減函數(shù)-------------------4分

       (Ⅱ)由----------6分

    由(Ⅰ)知函數(shù)上的單調(diào)減函數(shù)  ∴----------------8分

    ,--------------------------------10分

     ∴原不等式的解集為--------------------------12分

    18、解:(Ⅰ)  

    所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

     (Ⅱ) 證明:據(jù)題意x1<x2<x3,

    由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

    …………………8分

    即ㄓ是鈍角三角形……………………………………..9分

    (Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

     

      ①          …………………………………………..12分

    而事實(shí)上,    ②

    由于,故(2)式等號不成立.這與式矛盾.

    所以ㄓ不可能為等腰三角形. ……………………………….14分

    19、解:(Ⅰ)經(jīng)計算,,.    …………….2分

    當(dāng)為奇數(shù)時,,即數(shù)列的奇數(shù)項成等差數(shù)列,

    ;  …………………………….4分                   

    當(dāng)為偶數(shù),,即數(shù)列的偶數(shù)項成等比數(shù)列,

    .…………………………….6分                            

    因此,數(shù)列的通項公式為. ………………………7分

    (Ⅱ),                             

       ……(1)

     …(2)

    (1)、(2)兩式相減,

         

       .……………………………….14分

    20、(I)證明:連結(jié)OC

    …………….1分

    ……….2分

    中,由已知可得

    ……….3分

    平面…………………………….5分

    (II)解:如圖建立空間直角坐標(biāo)系,設(shè)平面ACD的法向量為

          

             …………………….7分

     

           令是平面ACD的一個法向量!.8分

           又

           點(diǎn)E到平面ACD的距離

           …………………….10分

    (III)     ;

     

      則二面角A-CD-B的余弦值為!.14分

    21.解 (Ⅰ)由,                 -----------1分

    當(dāng)時,,

    此時,,   -----------2分

    ,所以是直線與曲線的一個切點(diǎn);      -----------3分

    當(dāng)時,

    此時,,            -----------4分

    ,所以是直線與曲線的一個切點(diǎn);       -----------5分

    所以直線l與曲線S相切且至少有兩個切點(diǎn);

    對任意xR,,

    所以        ---------------------------------------------------------------------6分

    因此直線是曲線的“上夾線”.        ----------7分

    (Ⅱ)推測:的“上夾線”的方程為       ------9分

    ①先檢驗(yàn)直線與曲線相切,且至少有兩個切點(diǎn):設(shè):

     

    ,得:(kZ)             ------10分

    當(dāng)時,

    故:過曲線上的點(diǎn)(,)的切線方程為:

    y-[]= [-()],化簡得:

    即直線與曲線相切且有無數(shù)個切點(diǎn).    -----12分

    不妨設(shè)

    ②下面檢驗(yàn)g(x)F(x)

    g(x)-F(x)=

    直線是曲線的“上夾線”.           -----14分


    同步練習(xí)冊答案
  • <button id="7ecdy"><ins id="7ecdy"><abbr id="7ecdy"></abbr></ins></button>
  • <samp id="7ecdy"><pre id="7ecdy"><abbr id="7ecdy"></abbr></pre></samp>
    <td id="7ecdy"><tbody id="7ecdy"></tbody></td>
    <menuitem id="7ecdy"><tbody id="7ecdy"><video id="7ecdy"></video></tbody></menuitem>
    <menuitem id="7ecdy"><label id="7ecdy"></label></menuitem>
    <td id="7ecdy"><ins id="7ecdy"></ins></td>
    <td id="7ecdy"></td>
    <menuitem id="7ecdy"></menuitem>