題目列表(包括答案和解析)
若,求:(1)在之間的平均速度(設(shè));
(2)在時的瞬時速度.
⑴若,求的單調(diào)區(qū)間;
⑵在定義域內(nèi)既有極大值又有極小值,求的取值范圍。
若,求函數(shù)的最大值和最小值;
若,求值:
(1) ;
(2)
⑴若,求的單調(diào)區(qū)間;
⑵在定義域內(nèi)既有極大值又有極小值,求的取值范圍。
一、 選擇題(每小題5分,共50分.請把正確選擇支號填在答題表內(nèi).)
1―5 DADBA 6―10 BADCB
二、填空題(每小題5分,共20分):
11.84; 12.e-2; 13.8; 14.3;
三、解答題:本大題共6小題,共80分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
15(本小題滿分12分)
解(1)∵//,
①若,共向,則 =||•||= ………………… 3′
②若,異向,則 =-||•||=- ……………… 6′
(2)∵,的夾角為135°, ∴ =||•||•cos135°=-1 …… 8′
∴|+|2=(+)2 =2+2+2=1+2-2=1 ………… 11′
∴ ……………………………………12
16. (本小題滿分13分)
解:(1)函數(shù)可化簡為f ( x ) = cos, 3分
最小正周期為; 4分
當(dāng)時,f ( x )取得最大值1 5分
取得最大值時x的取值集合為 6分
(2)由得對稱軸方程為:,其中 9分
(3)由于f ( x ) = cos,
把f ( x )圖像上各點向左平移個單位,得到 y=cos2x 11分
再把所得圖像上各點的橫線坐標縮短到原來的2倍,縱坐標不變,得到y(tǒng)=cosx
13分
17. (本小題滿分13分)
解:(1)由已知得 解得.…………………1分
設(shè)數(shù)列的公比為,由,可得.
又,可知,即, ……………3分
解得.
由題意得. .……………………………………………… 5分
故數(shù)列的通項為. … ………………………………7分
(2)由于 由(1)得
…………………………9分
又
是等差數(shù)列. …………………………………………11分
…………………13分
18(本小題滿分13分)
解:如圖,連結(jié),由已知,。。。。。。。1分
, 。。。。。。。。。。2分
,
又,。。。。。3分
是等邊三角形, 。。。。。4分
,
由已知,,
,。。。。。。。。。6分
在中,由余弦定理,
. 。。。。。。。。。。。。。10分
. 。。。。。。。。。。11分
因此,乙船的速度的大小為(海里/小時).。。。。。。12分
答:乙船每小時航行海里. 。。。。。。。。。。。。。。。。。。。。。。。。13分
29.(本小題滿分14分)
解:(1)
20. (本小題滿分15分)
解:(1)時,f(x)>1
令x=-1,y=0則f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1……………………………3′
若x>0,則f(x-x)=f(0)=f(x)f(-x)故
故x∈R f(x)>0…………………………………………………5分
任取x1<x2
故f(x)在R上減函數(shù)………………………………………..7分
(2)① 由f(x)單調(diào)性
…9分
得:an+1=an+2 故{an}等差數(shù)列 ………………………10分
②
是遞增數(shù)列………………12分
當(dāng)n≥2時,
……………………………13分
即
而a>1,∴x>1
故x的取值范圍(1,+∞)……………………………15分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com