若.則稱直線是曲線當時的漸近線 . 由此可知.曲線當時的漸近線方程為 查看更多

 

題目列表(包括答案和解析)

對于具有相同定義域的函數,若存在函數為常數),對任給的正數,存在相應的,使得當時,總有則稱直線為曲線的“分漸近線”。給出定義域均為D=的四組函數如下:

,;②,

,;④,。

其中,曲線存在“分漸近線”的是

A.①④               B.②③                  C.②④                 D.③④

查看答案和解析>>

對于具有相同定義域的函數,若存在函數為常數),對任給的正數,存在相應的,使得當時,總有則稱直線為曲線的“分漸近線”。給出定義域均為D=的四組函數如下:

,;②,;

;④。

其中,曲線存在“分漸近線”的是

A.①④               B.②③                  C.②④                 D.③④

查看答案和解析>>

對于具有相同定義域D的函數f(x)和g(x),若存在函數h(x)=kx+b(k,b為常數),對任給的正數m,存在相應的x0D,使得當xD且x>x0時,總有則稱直線l:y=kx+b為曲線y=f(x)與y=g(x)的“分漸近線”。給出定義域均為D=的四組函數如下:
①f(x)=x2,g(x)= ;    ②f(x)=10-x+2,g(x)= ;
③f(x)= ,g(x)= ;   ④f(x)= ,g(x)=2(x-1-e-x).
其中,曲線y=f(x)與y=g(x)存在“分漸近線”的是

A.①④B.②③C.②④D.③④

查看答案和解析>>

對于具有相同定義域D的函數f(x)和g(x),若存在函數h(x)=kx+b(k,b為常數),對任給的正數m,存在相應的x0D,使得當xD且x>x0時,總有則稱直線l:y=kx+b為曲線y=f(x)與y=g(x)的“分漸近線”。給出定義域均為D=的四組函數如下:
①f(x)=x2,g(x)= ;    ②f(x)=10-x+2,g(x)= ;
③f(x)= ,g(x)= ;   ④f(x)= ,g(x)=2(x-1-e-x).
其中,曲線y=f(x)與y=g(x)存在“分漸近線”的是
A.①④B.②③C.②④D.③④

查看答案和解析>>

對于具有相同定義域D的函數f(x)和g(x),若存在函數h(x)=kx+b(k,b為常數)對任給的正數m,
存在相應的x∈D使得當x∈D且x>x時,總有,則稱直線l:y=ka+b為曲線y=f(x)和y=g(x)的“分漸進性”.給出定義域均為D={x|x>1}的四組函數如下:
①f(x)=x2,g(x)=②f(x)=10-x+2,g(x)=③f(x)=,g(x)=④f(x)=,g(x)=2(x-1-e-x
其中,曲線y=f(x)和y=g(x)存在“分漸近線”的是( )
A.①④
B.②③
C.②④
D.③④

查看答案和解析>>

1.   2. 1  3. 4  4.  5. 1,  6.  90° 7. 13

8.   9.   10. 4  11. y=2x  12. 9

13. D  14. B  15. D  16. C

17. 解: (1)y=2sin(2x-),  3’     最小正周期T=    5’

(2) ……8’

∴函數y的值域為[-1,2]                           ……………10’

18. (1)解  如圖所示,在平面ABCD內,過CCPDE,交直線ADP,則∠ACP(或補角)為異面直線ACDE所成的角  

在△ACP中,

易得AC=a,CP=DE=a,AP=a

由余弦定理得cosACP=

ACDE所成角為arccos 

另法(向量法)  如圖建立坐標系,則

ACDE所成角為arccos 

 (2)解  ∵∠ADE=∠ADF,∴AD在平面BEDF內的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB

在Rt△BAD中,AD=a,AB′=a,BD=a

則cosADB′=

AD與平面BEDF所成的角是arccos 

另法(向量法) 

∵∠ADE=∠ADF,∴AD在平面BEDF內的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB′,

如圖建立坐標系,則

AD與平面BEDF所成的角是arccos 

19.  (1)解為等差數列,

     ……………………………………………………2分

解得 ……………………………4分

 ………………………………………………………………5分

 ……………………………………………………………6分

   (2) ………………………………………………6分

 …………8分

,知上單減,在上單增,

,

…………………………………………10分

∴當n = 5時,取最大值為 ………………12分

20. 解:(1)∵,∴,即

,∴

   (2),  

  當

時,

     當時,∵,∴這樣的不存在。

     當,即時,,這樣的不存在。

     綜上得, .

21. 解:(1)Q為PN的中點且GQ⊥PN

       GQ為PN的中垂線|PG|=|GN|                                        

              ∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長,半焦距,∴短半軸長b=2,∴點G的軌跡方程是

   (2)因為,所以四邊形OASB為平行四邊形

       若存在l使得||=||,則四邊形OASB為矩形

       若l的斜率不存在,直線l的方程為x=2,由

       矛盾,故l的斜率存在.   

       設l的方程為

      

          ①

      

          ②                      

       把①、②代入

∴存在直線使得四邊形OASB的對角線相等.

 


同步練習冊答案