18.已知線段PA⊥矩形ABCD所在平面.M.N分別是AB.PC的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知ABCD是矩形,,E、F分別是線段AB、BC的中點(diǎn),ABCD.   (1)證明:PFFD

   (2)在PA上找一點(diǎn)G,使得EG∥平面PFD.

查看答案和解析>>

(本小題滿分12分)已知四棱錐底面ABCD是矩形,PA⊥平面ABCD AD=2,AB=1,EF分別是線段ABBC的中點(diǎn),

(1)證明:PFFD
(2)在PA上找一點(diǎn)G,使得EG∥平面PFD;.
(3)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

(本小題滿分12分)
已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點(diǎn)。
(1)當(dāng)E為PD的中點(diǎn)時,求證:
(2)是否存在E使二面角E—AC—D為30°?若存在,求,若不存在,說明理由。

查看答案和解析>>

(本小題滿分12分)

    已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點(diǎn)。

    (1)當(dāng)E為PD的中點(diǎn)時,求證:

    (2)是否存在E使二面角E—AC—D為30°?若存在,求,若不存在,說明理由。

 

查看答案和解析>>

(本小題滿分12分) 已知四棱錐底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分別是線段AB.BC的中點(diǎn),

(1)證明:PF⊥FD;

(2)在PA上找一點(diǎn)G,使得EG∥平面PFD;.

(3)若與平面所成的角為,求二面角的余弦值.

 

查看答案和解析>>

一、選擇題:

1.D    2.C    3.A    4.A    5.B    6.A    7.B    8.C    9.B    10.C

11.B   12.C

二、選擇題;

    1. tesoon

      三、解答題;

      17.(10分)

          …..3分

      得,

      當(dāng)時,;  6分   當(dāng)時,       ……..10分

      18.(12分)

      (1)取PD的中點(diǎn)E,連接AE、EN

      ∵EN平行且等于DC,而DC平行且等于AM   

      ∴AMNE為平行四邊形MN∥AE  

      ∴MN∥平面PAD (6分)

      (2)∵PA⊥平面ABCD∴CD⊥PA又

      ∵ABCD為矩形,∴CD⊥AD

      ∴CD⊥AE,AE∥MN,MN⊥CD  (3分)

      ∵AD⊥DC,PD⊥DC ∴∠ADP=45°

      又E是斜邊的PD的中點(diǎn)∴AE⊥PD,

      ∴MN⊥PD∴MN⊥CD,∴MH⊥平面PCD.(6分)

      19.(12分)

      (1)

      所以              …….. 6分

      (2)

      因為

      所以,

      20.(12分)

      (1)由題意知

      當(dāng)……………………2分

      當(dāng)

      兩式相減得整理得:          ……..4分

      是以2為首項,2為公比的等比數(shù)列,   ……. 6分

      (2)由(1)知        ……..1分

         ①

        ②

      ①―②得   ……… 9分

      …4分      ………6分

      21.(12分)

      (1)由題有,∵的兩個極值點(diǎn),

      是方程的兩個實(shí)根,

      ∵a>0,∴

      又∵,∴,即;  ..6分

      (2)令,則

      ,由,

      上是增函數(shù),在區(qū)間上是減函數(shù), ∴,

      ,∴b的最大值是.     …..6分

      22.(12分)

      (1)拋物線的準(zhǔn)線,于是,4+=5,∴p=2.

      ∴拋物線方程為.    (4分)

      (2)∵點(diǎn)A的坐標(biāo)是(4,4),由題意得B(0,4),M(0,2).又∵F(1,0),

      ,又MN⊥FA,∴,則FA的方程為

      MN的方程為,解方程組得,

      ∴N       …..4分

      (3)由題意得,圓M的圓心是點(diǎn)(0,2),半徑為2.

      當(dāng)m=4時,直線AK的方程為x=4,此時,直線AK與圓M相離.

      當(dāng)時,直線AK的方程為即為,

      圓心M(0,2)到直線AK的距離,令d>2.解得m>1,

      所以,當(dāng)m>1時,直線AK與圓M相離;當(dāng)m=1時,直線AK與圓M相切,

      當(dāng)m<1時,直線AK與圓M相交.             ………. 4分

       

       

       


      同步練習(xí)冊答案
    2. <tr id="dsm2x"><sup id="dsm2x"></sup></tr>

      <div id="dsm2x"><small id="dsm2x"></small></div>