題目列表(包括答案和解析)
設(shè)離散型隨機(jī)變量可能的取值為1、2、3、4,(),又的數(shù)學(xué)期望為,則
A. B.0 C. D.
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式如下表所示: | ||||||||||||
| ||||||||||||
(1)分別求利潤L1,L2,L3與產(chǎn)量q的函數(shù)關(guān)系式; (2)當(dāng)產(chǎn)量q確定時(shí),求期望Eξk; (3)試問產(chǎn)量q取何值時(shí),Eξk取得最大值。 |
現(xiàn)有4個(gè)人去參加某娛樂活動,該活動有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.
設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件
則.
(1)這4個(gè)人中恰有2人去參加甲游戲的概率
(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故
所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.
(3)的所有可能取值為0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
隨機(jī)變量的數(shù)學(xué)期望.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com