題目列表(包括答案和解析)
(本小題滿分13分)設(shè)函數(shù)f(x)=a .b,其中向量a =(m,cos2x),b =(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時x的值的集合.
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
(本小題滿分13分)
某市物價局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.
(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關(guān)于月份的函數(shù)解析式;
(Ⅱ)假設(shè)某藥店每月初都購進這種藥品p 盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.
一、選擇題
ADBBD ABBAD
二、填空題
11、 12、 13、C 14、21 15、 16、(-,0)
三、解答題
17、解:(1) 4分
∵f(x)的最小值為3
所以-a+=3,a=2
∴f(x)=-2sin(2x+)+5 6分
(2)因為(-)變?yōu)榱?),所以h=,k=-5
由圖象變換得=-2sin(2x-) 8分
由2kp+≤2x-≤2kp+ 得kp+≤x≤kp+ 所以單調(diào)增區(qū)間為
[kp+, kp+](k∈Z) 13分
18、解:(1)如圖,在四棱錐中,
∵BC∥AD,從而點D到平面PBC間的距離等于點A
到平面PBC的距離. 2分
∵∠ABC=,∴AB⊥BC,
又PA⊥底面ABCD,∴PA⊥BC,
∴BC⊥平面 PAB, 4分
∴平面PAB⊥平面PBC,交線為PB,
過A作AE⊥PB,垂足為E,則AE⊥平面PBC,
∴AE的長等于點D到平面PBC的距離.
而,∴.
即點D到平面PBC的距離為. 6分
(2)依題意依題意四棱錐P-ABCD的體積為,
∴(BC+AD)AB×PA=,∴, 8分
平面PDC在平面PAB上的射影為PAB,SPAB=, 10分
PC=,PD=,DC=,SPDC=a2, 12分
設(shè)平面PDC和平面PAB所成二面角為q,則cosq==
q=arccos. 13分
19、解:(1)從10 道不同的題目中不放回地隨機抽取3次,每次只抽取1道題,抽法總數(shù)為只有第一次抽到藝術(shù)類數(shù)目的抽法總數(shù)為
∴ 5分
(2)抽到體育類題目的可能取值為0,1,2,3則
∴的分布列為
0
1
2
3
P
10分
11分
從而有 13分
20、解:(1)設(shè)與在公共點處的切線相同
1分
由題意知 ,∴ 3分
由得,,或(舍去)
即有 5分
(2)設(shè)與在公共點處的切線相同
由題意知 ,∴
即有 8分
令,則,于是
當,即時,;
當,即時, 11分
21、解:(1)∵且|PF1|+|PF2|=
∴P的軌跡為以F1、F2為焦點的橢圓E,可設(shè)E:(其中b2=a2-5) 2分
在△PF
又
∴當且僅當| PF1 |=| PF2 |時,| PF1 |?| PF2 |取最大值, 4分
此時cos∠F1PF2取最小值
令=a2=9,
∵c= ∴b2=4故所求P的軌跡方程為 6分
(2)設(shè)N(s,t),M(x,y),則由,可得(x,y-3)=λ(s,t-3)
∴x=λs,y=3+λ(t-3) 7分
而M、N在動點P的軌跡上,故且
消去S得解得 10分
又| t |≤2,∴,解得,故λ的取值范圍是[,5] 12分
22、解:(1)由,得,代入,得,
整理,得,從而有,,
是首項為1,公差為1的等差數(shù)列,即. 4分
(2), ,
,
,
. 8分
(3)∵
.
由(2)知,,
. 12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com