即所求的二面角的大小為--------------- 查看更多

 

題目列表(包括答案和解析)

(2006•黃浦區(qū)二模)設a為正數(shù),直角坐標平面內的點集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標系中,規(guī)定a∈Z,且y∈Z時,(x,y)稱為格點,當a=8時,A內有幾個格點(本小題只要直接寫出結果即可);
(3)點集A連同它的邊界構成的區(qū)域記為
.
A
,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
.
A
(r>0)
,求r的最大值.

查看答案和解析>>

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

(3)因為∴為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、

,又點,,∴

,且不共線,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>


同步練習冊答案