11.已知F1.F2是兩個定點.點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點.并且PF1⊥PF2.e1和e2分別是上述橢圓和雙曲線的離心率.則有 查看更多

 

題目列表(包括答案和解析)

已知F1、F2是兩個定點,點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點,并且PF1⊥PF2,e1和e2分別是上述橢圓和雙曲線的離心率,則有( 。
A、e12+e22=2
B、e12+e22=4
C、
1
e
2
1
+
1
e
2
2
=2
D、
1
e
2
1
+
1
e
2
2
=4

查看答案和解析>>

已知F1、F2是兩個定點,點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點,并且PF1⊥PF2,e1和e2分別是上述橢圓和雙曲線的離心率,則有(  )
A.e12+e22=2B.e12+e22=4
C.
1
e21
+
1
e22
=2
D.
1
e21
+
1
e22
=4

查看答案和解析>>

已知F1、F2是兩個定點,點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點,并且PF1⊥PF2,e1和e2分別是上述橢圓和雙曲線的離心率,則有

A.+=4                               B.+=2

C.e12+e22=4                                  D.e12+e22=2

查看答案和解析>>

已知F1、F2是兩個定點,點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點,并且PF1⊥PF2,e1和e2分別是上述橢圓和雙曲線的離心率,則有

A.+=4                               B.+=2

C.e12+e22=4                                  D.e12+e22=2

查看答案和解析>>

已知F1、F2是兩個定點,點P是以F1和F2為公共焦點的橢圓和雙曲線的一個交點,并且PF1⊥PF2,e1和e2分別是上述橢圓和雙曲線的離心率,則有( )
A.e12+e22=2
B.e12+e22=4
C.
D.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DA,DC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖).

<strong id="zaq4s"></strong>
  •        P(0,0,a),F,,).………………2分

       (I)

           …………………………………………4分

    文本框:     (II)設平面DEF的法向量為

           得

           取x=1,則y=-2,z=1.

           ………………………………………………6分

          

           設DB與平面DEF所成角為……………………………………8分

       (III)假設存在點G滿足題意

           因為

          

           ∴存在點G,其坐標為(,0,0),即G點為AD的中點.……………………12分

    19.(本小題滿分12分)

           解:(I)ξ的所有可能取值為0,1,2,依題意得:

           …………3分

           ∴ξ的分布列為

          

    ξ

    0

    1

    2

    P

           ∴Eξ=0×+1×+2×=1.…………………………………………4分

       (II)設“甲、乙都不被選中”的事件為C,則……6分

           ∴所求概率為…………………………………8分

       (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B

           ………………………………10分

           ……………12分

    20.(本小題滿分12分)

           解:(I)由題意知

           是等差數(shù)列.…………………………………………2分

          

           ………………………………5分

       (II)由題設知

          

           是等差數(shù)列.…………………………………………………………8分

          

           ………………………………10分

           ∴當n=1時,

           當

           經(jīng)驗證n=1時也適合上式. …………………………12分

    21.(本小題滿分12分)

           解:(I)令

           則

           是單調(diào)遞減函數(shù).……………………………………2分

           又取

           在其定義域上有唯一實根.……………………………4分

       (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

          

           滿足條件②.故是集合M中的元素.……………………………7分

       (III)不妨設在其定義域上是增函數(shù).

           ………………………………………………………………8分

           是其定義域上的減函數(shù).

           .………………10分

          

           …………………………………………12分

    22.(本小題滿分14分)

           解:(I)設

           由

           ………………………………………………2分

           又

          

           同理,由………………………………4分

           …………6分

       (II)方法一:當m=0時,A(2,2),B(2,-),Dn,2),En,-2).

           ∵ABED為矩形,∴直線AE、BD的交點N的坐標為(………………8分

           當

          

           同理,對、進行類似計算也得(*)式.………………………………12分

           即n=-2時,N為定點(0,0).

           反之,當N為定點,則由(*)式等于0,得n=-2.…………………………14分

           方法二:首先n=-2時,則D(-2,y1),A

             ①

             ②…………………………………………8分

           ①-②得

          

           …………………………………………………………10分

           反之,若N為定點N(0,0),設此時

           則

           由D、N、B三點共線,   ③

           同理E、N、A三點共線, ④………………12分

           ③+④得

           即-16m+8m4m=0,m(n+2)=0.

           故對任意的m都有n=-2.……………………………………………………14分

     

     

     


    同步練習冊答案