A.(2.) B. C. D. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(不等式選講選做題)如果存在實數(shù)x使不等式|x+1|-|x-2|<k成立,則實數(shù)k的取值范圍是
 

B.(幾何證明選講選做題)如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
7
,AB=BC=3
,則AC的長為
 

C.(坐標系與參數(shù)方程選做題)在極坐標系(ρ,θ)(0≤θ<2π)中,曲線
ρ=2sinθ與ρcosθ=-1的交點的極坐標為
 

查看答案和解析>>

若α∈(
π
2
,π),則不等式logsinα(1-x2)>2的解集是( 。

查看答案和解析>>

若α∈(
π
2
,π),則不等式logsinα(1-x2)>2的解集是( 。
A.{x|-cosα<x<cosα}
B.{x|-1<x<-cosα或cosα<x<1}
C.{x|x<-cosα或x>cosα}
D.{x|-1<x<cosα或-cosα<x<1}

查看答案和解析>>

A.(不等式選做題)不等式|≤1的實數(shù)解集為   
B.(幾何證明選做題)如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.則=   
C.(坐標系與參數(shù)方程選做題)若△ABC的底邊BC=10,∠B=2∠A,以B點為極點,BC 為極軸,則頂點A 的極坐標方程為   

查看答案和解析>>

A.(不等式選做題)不等式|≤1的實數(shù)解集為   
B.(幾何證明選做題)如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.則=   
C.(坐標系與參數(shù)方程選做題)若△ABC的底邊BC=10,∠B=2∠A,以B點為極點,BC 為極軸,則頂點A 的極坐標方程為   

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

D

C

C

B

C

B

B

D

二、填空題

11.100    12.4       13.(-2,2)      14.

15.     16.    17.

18.(本小題14分)

解答:(1)設甲選手答對一個問題的正確率為,則

故甲選手答對一個問題的正確率            3分

(Ⅱ)選手甲答了3道題目進入決賽的概率為=     4分

選手甲答了4道題目進入決賽的概率為      5分

選手甲答了5道題目進入決賽的概率為     6分

選手甲可以進入決賽的概率         8分

(Ⅲ)可取3,4,5

則有             9分

       10分

      11分

因此有     (直接列表也給分)

3

4

5

          14分

19.解:由三視圖知,該多面體是低面為直角三角形的直三棱柱

(1)證明:連續(xù)取,易見通過點,連接

    4分

(2)作,連接

為所求二面角的平面角。        6分

故所求二面角的余弦值為                 9分

(3)棱錐的體積   14分

20  解:(1)解方程得         1分

時,,此時         2分

時,   3分

依次類推:

            5分

(2)

      

                    9分

(3)由

           

                  11分

   設

   易證上單調(diào)遞減,在()上單調(diào)遞增。    13分

            

   

                   15分

21.解:(1)設

直線的方程為:

直線的方程為:

解方程組得      3分

由已知,三點共線,設直線的方程為:

與拋物線方程聯(lián)立消可得:

         5分

所以點的縱坐標為-2,所以線段中點的縱坐標O

即線段軸平分。                 6分

(2)

         

          =0            9分

   

              

                               13分

    所以在直角中,

  由影射定理即得             15分

22.解:(1)代入得

       設        1分

        

                           3分

          令解得

     上單調(diào)遞減,在上單調(diào)遞增。        5分

        即原式的最小值為-1         7分

(2)要證即證

    即證

    即證                   9分

    由已知     設     10分

                        11分

   

                     13分

    所以上單調(diào)遞減,

    原不等式得證。                                   14分

 

 


同步練習冊答案