A.若 B.若 查看更多

 

題目列表(包括答案和解析)

A.若關于x的不等式|x+1|+|x-3|≥a恒成立,則實數(shù)a的取值范圍是
a≤4
a≤4

B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為C,PC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
4
4

C.已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,則極點到這條直線的距離是
2
2
2
2

查看答案和解析>>

A.若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為
(-∞,
1
3
]
(-∞,
1
3
]

B.如圖,PA切圓O于點A,割線PBC經過圓心O,OB=PB=1,OA繞點O逆時針旋轉60°到OD,則PD的長為
7
7

C.直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長為
2
3
2
3

查看答案和解析>>

A.若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為   
B.如圖,PA切圓O于點A,割線PBC經過圓心O,OB=PB=1,OA繞點O逆時針旋轉60°到OD,則PD的長為   
C.直線3x-4y-1=0被曲線(θ為參數(shù))所截得的弦長為   

查看答案和解析>>

A.若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為________.
B.如圖,PA切圓O于點A,割線PBC經過圓心O,OB=PB=1,OA繞點O逆時針旋轉60°到OD,則PD的長為________.
C.直線3x-4y-1=0被曲線數(shù)學公式(θ為參數(shù))所截得的弦長為________.

查看答案和解析>>

    A.若,則

    B.中,的充要條件

    C.若,則

    D.命題“若,則”的否命題是“若,則

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

D

C

C

B

C

B

B

D

二、填空題

11.100    12.4       13.(-2,2)      14.

15.     16.    17.

18.(本小題14分)

解答:(1)設甲選手答對一個問題的正確率為,則

故甲選手答對一個問題的正確率            3分

(Ⅱ)選手甲答了3道題目進入決賽的概率為=     4分

選手甲答了4道題目進入決賽的概率為      5分

選手甲答了5道題目進入決賽的概率為     6分

選手甲可以進入決賽的概率         8分

(Ⅲ)可取3,4,5

則有             9分

       10分

      11分

因此有     (直接列表也給分)

3

4

5

          14分

19.解:由三視圖知,該多面體是低面為直角三角形的直三棱柱

(1)證明:連續(xù)取,易見通過點,連接。

    4分

(2)作,連接

為所求二面角的平面角。        6分

故所求二面角的余弦值為                 9分

(3)棱錐的體積   14分

20  解:(1)解方程得         1分

時,,此時         2分

時,   3分

依次類推:

            5分

(2)

      

                    9分

(3)由

           

                  11分

   設

   易證上單調遞減,在()上單調遞增。    13分

            

   

                   15分

21.解:(1)設

直線的方程為:

直線的方程為:

解方程組得      3分

由已知,三點共線,設直線的方程為:

與拋物線方程聯(lián)立消可得:

         5分

所以點的縱坐標為-2,所以線段中點的縱坐標O

即線段軸平分。                 6分

(2)

         

          =0            9分

   

              

                               13分

    所以在直角中,

  由影射定理即得             15分

22.解:(1)代入得

       設        1分

        

                           3分

          令解得

     上單調遞減,在上單調遞增。        5分

        即原式的最小值為-1         7分

(2)要證即證

    即證

    即證                   9分

    由已知     設     10分

                        11分

   

                     13分

    所以上單調遞減,

    原不等式得證。                                   14分

 

 


同步練習冊答案