題目列表(包括答案和解析)
已知向量,設(shè)函數(shù)。學(xué)科網(wǎng)
(1)求函數(shù) 的最小正周期及時的最大值;學(xué)科網(wǎng)
(2)把函數(shù)的圖象向左平移個單位,所得到的圖象對應(yīng)的函數(shù)為奇函數(shù),求的最小值。
已知向量,設(shè)函數(shù)。學(xué)科網(wǎng)
(1)求函數(shù) 的最大值和最小正周期;學(xué)科網(wǎng)
(2)求函數(shù)的單調(diào)遞增區(qū)間。
已知向量滿足,, 若為的中點(diǎn),并且,則點(diǎn)在( )學(xué)科網(wǎng)
A.以()為圓心,半徑為1的圓上B.以()為圓心,半徑為1的圓上
C.以()為圓心,半徑為1的圓上D.以()為圓心,半徑為1的圓上學(xué)科網(wǎng)
已知向量=(3,4),=(sin,cos),且,則tan等于 ( )[來源:學(xué)+科+網(wǎng)Z+X+X+K]
A. B. C. D.
已知直線交www.ks5u.com于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),向量、滿足,則實(shí)數(shù)a的值是( )學(xué)科網(wǎng)
A.2 B.-2 C.2或-2 D.或-學(xué)科網(wǎng)
一、選擇題:1-5 :A D B D C 6-10: C C C D B 11-12: B B學(xué)科網(wǎng)
二、填空題: 13, 14. 3 15. 16. (1,2),(3,402)學(xué)科網(wǎng)
三、解答題
三、解答題(本大題共6小題,共70分)
17.(12分)
解:(1)∥ 2分
4分
又為銳角 6分
(Ⅱ) 由 得
又代入上式得:(當(dāng)且僅當(dāng)時等號成立。) 9分
(當(dāng)且僅當(dāng)時等號成立。) 11分
的面積的取值范圍為. 12分
18.(12分)
解法一:
(Ⅰ)取中點(diǎn),連結(jié).
,.
,.
,平面.
平面,.
(Ⅱ),,
.
又,.
又,即,且,
平面.
取中點(diǎn).連結(jié).
,.
是在平面內(nèi)的射影,
.
是二面角的平面角.
在中,,,,
.二面角的余弦值為
(Ⅲ)由(Ⅰ)知平面,
平面平面.
過作,垂足為.
平面平面,
平面.
的長即為點(diǎn)到平面的距離.
由(Ⅰ)知,又,且,
平面.平面,
.
在中,,,..
點(diǎn)到平面的距離為.
解法二:
(Ⅰ),,.
又,.
,平面.
平面,.
(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.
則.設(shè).
,,.
取中點(diǎn),連結(jié).
,,
,.
是二面角的平面角.
,,,
.二面角的余弦值為.
(Ⅲ),
在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
,點(diǎn)的坐標(biāo)為.
.點(diǎn)到平面的距離為.
19.(12分)
解:(Ⅰ)由條件得,又時,,
故數(shù)列構(gòu)成首項(xiàng)為1,公式為的等比數(shù)列.從而,即.
(Ⅱ)由得,
,
兩式相減得 : , 所以 .
(Ⅲ)由得
所以.
20.(12分)
解:(Ⅰ)①當(dāng)0<t10時,V(t)=(-t2+14t-40)
化簡得t2-14t+40>0,
解得t<4,或t>10,又0<t10,故0<t<4.
②當(dāng)10<t12時,V(t)=4(t-10)(3t-41)+50<50,
化簡得(t-10)(3t-41)<0,
解得10<t<,又10<t12,故 10<t12.
綜合得0<t<4,或10<t12,
故知枯水期為1月,2月, 3月,4月,11月,12月共6個月.
(Ⅱ)由(Ⅰ)知:V(t)的最大值只能在(4,10)內(nèi)達(dá)到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
當(dāng)t變化時,V′(t) 與V (t)的變化情況如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
極大值
由上表,V(t)在t=8時取得最大值V(8)=8e2+50-108.32(億立方米).
故知一年內(nèi)該水庫的最大蓄水量是108.32億立方米
21.(12分)
解:(Ⅰ)由題意得直線的方程為.
因?yàn)樗倪呅?sub>為菱形,所以.
于是可設(shè)直線的方程為.
由得.
因?yàn)?sub>在橢圓上,
所以,解得.
設(shè)兩點(diǎn)坐標(biāo)分別為,
則,,,.
所以.
所以的中點(diǎn)坐標(biāo)為.
由四邊形為菱形可知,點(diǎn)在直線上,
所以,解得.
所以直線的方程為,即.
(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,
所以.
所以菱形的面積.
由(Ⅰ)可得,
所以.
所以當(dāng)時,菱形的面積取得最大值.
22.(10分)解:從⊙O外一點(diǎn)P向圓引兩條切線PA、PB和割線PCD。從A點(diǎn)作弦AE平行于CD,連結(jié)BE交CD于F。求證:BE平分CD.
【分析1】構(gòu)造兩個全等△.
連結(jié)ED、AC、AF。
CF=DF←△ACF≌△EDF←
←
←∠PAB=∠AEB=∠PFB
【分析2】利用圓中的等量關(guān)系。連結(jié)OF、OP、OB.
←∠PFB=∠POB←
←
23.(10分)解:(Ⅰ)是圓,是直線.
的普通方程為,圓心,半徑.
的普通方程為.
因?yàn)閳A心到直線的距離為,所以與只有一個公共點(diǎn).
(Ⅱ)壓縮后的參數(shù)方程分別為
:(為參數(shù)); :(t為參數(shù)).
化為普通方程為::,:,
聯(lián)立消元得,其判別式,
所以壓縮后的直線與橢圓仍然只有一個公共點(diǎn),和與公共點(diǎn)個數(shù)相同.
24.(10分)解:
(Ⅰ)
圖像如下:
(Ⅱ)不等式
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com