(A) (B) 查看更多

 

題目列表(包括答案和解析)

“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的(  )
A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分又不必要條件

查看答案和解析>>

a
b
?存在唯一的實(shí)數(shù)λ,使
b
a

a
b
?存在不全為零的實(shí)數(shù)λ,μ,使λ
a
b
=
0

a
b
不共線?若存在實(shí)數(shù)λ,μ使λ
a
b
=
0
,則λ=μ=0;
a
b
不共線?不存在實(shí)數(shù)λ,μ使λ
a
b
=
0
.下列命題是真命題的是
 
(填序號(hào))

查看答案和解析>>

2、“a+b>2c”的一個(gè)充分條件是( 。

查看答案和解析>>

△A'B'C'斜二測(cè)畫法畫出的正△ABC的直觀圖,記△A'B'C'的面積為S',△ABC的面積為S,則
S′S
=
 

查看答案和解析>>

2、“a+b是偶數(shù)”是“a與b都是偶數(shù)”的( 。

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其補(bǔ)角就是異面直線與BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即異面直線與BC所成的角的大小為      

 

(3)過(guò)點(diǎn)D作于E,連接CE,由三垂線定理知,故是二面角的平面角,

,∴E為的中點(diǎn),∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小為   

20.解:(1)因,故可得直線方程為:

(2),,用數(shù)學(xué)歸納法可證.

(3),

所以

21.解:(1)∵ 函數(shù)是R上的奇函數(shù)    ∴    ∴ ,由的任意性知∵ 函數(shù)處有極值,又

是關(guān)于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知,

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函數(shù)

極大值1

減函數(shù)

極小值

增函數(shù)

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范圍是

22.(1)

(2)由

           ①

設(shè)C,CD中點(diǎn)為M,則有,

,又A(0,-1)且,

(此時(shí))      ②

將②代入①得,即,

綜上可得

 

 


同步練習(xí)冊(cè)答案