由 |AM|=.|AN|=3得 查看更多

 

題目列表(包括答案和解析)

已知{an}是遞增數(shù)列,其前n項和為Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求數(shù)列{an}的通項an;
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請說明理由;
(Ⅲ)設(shè)bn=an-
n-3
2
,cn=
2(n+3)an
5n-1
,若對于任意的n∈N*,不等式
5
m
31(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
1
cn+1+n-1
≤0恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列,設(shè)m,n,p,k都是正整數(shù).
(1)求證:若m+n=2p,則am+an=2ap,bmbn=(bp2;
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?請說明理由;
(3)求使命題P:“若bn=aqn(a、q為常數(shù),且aq≠0)對任意m,都存在k,有bmbm+1=bk”成立的充要條件.

查看答案和解析>>

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列,設(shè)m,n,p,k都是正整數(shù).
(1)求證:若m+n=2p,則am+an=2ap,bmbn=(bp2;
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?請說明理由;
(3)求使命題P:“若bn=aqn(a、q為常數(shù),且aq≠0)對任意m,都存在k,有bmbm+1=bk”成立的充要條件.

查看答案和解析>>

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列,設(shè)m,n,p,k都是正整數(shù).
(1)求證:若m+n=2p,則am+an=2ap,bmbn=(bp2
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?請說明理由;
(3)求使命題P:“若bn=aqn(a、q為常數(shù),且aq≠0)對任意m,都存在k,有bmbm+1=bk”成立的充要條件.

查看答案和解析>>

如圖,四邊形ABCD是邊長為1的正方形,MDABCD,且MDNB1,EBC的中點

(1)求異面直線NBAM所成角的余弦值

(2)在線段AN上是否存在點S,使得ES⊥平面AMN?

(3)若存在,求線段AS的長;若不存在,請說明理由

查看答案和解析>>


同步練習(xí)冊答案