15.本題共有2個小題.第1個題滿分5分.第2小題滿分10分. 查看更多

 

題目列表(包括答案和解析)

(本題滿分15分)

    如圖所示,某學校的教學樓前有一塊矩形空地,其長為32米,寬為18米,現(xiàn)要在此空地上種植一塊矩形草坪,三邊留有人行道,人行道寬度為米與米均不小于2米,且要求“轉角處”(圖中矩形)的面積為8平方米

(1)     試用表示草坪的面積,并指出的取值范圍

(2)     如何設計人行道的寬度、,才能使草坪的面積最大?并求出草坪的最大面積。

 

查看答案和解析>>

(本題滿分15分)由于衛(wèi)生的要求游泳池要經常換水(進一些干凈的水同時放掉一些臟水), 游泳池的水深經常變化,已知泰州某浴場的水深(米)是時間,(單位小時)的函數(shù),記作,下表是某日各時的水深數(shù)據(jù)

t(時)

0

3

6

9

12

15

18

21

24

y(米)

2 5

2 0

15

20

249

2

151

199

2 5

經長期觀測的曲線可近似地看成函數(shù) 

(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)的最小正周期T,振幅A及函數(shù)表達式;

(Ⅱ)依據(jù)規(guī)定,當水深大于2米時才對游泳愛好者開放,請依據(jù)(1)的結論,判斷一天內的上午8  00至晚上20  00之間,有多少時間可供游泳愛好者進行運動 

查看答案和解析>>

(08年上海卷文)(本題滿分15分)本題共有2個小題,第1個題滿分5分,第2小題滿分10分.

已知函數(shù),,直線x=t(t∈R)與函數(shù)f(x)、g(x)的圖像分別交于M、N兩點.

(1)   當時,求|MN|的值;

(2)   求|MN|在t時的最大值.

查看答案和解析>>

(2005•上海模擬)本題共有2個小題,第1小題滿分8分,第2小題滿分6分
過直角坐標平面xOy中的拋物線y2?2px (p>0)的焦點F作一條傾斜角為
π4
的直線與拋物線相交于A、B兩點.
(1)用p表示A、B之間的距離并寫出以AB為直徑的圓C方程;
(2)若圓C于y軸交于M、N兩點,寫出M、N的坐標,證明∠MFN的大小是與p無關的定值,并求出這個值.

查看答案和解析>>

(2010浙江理數(shù))(21) (本題滿分15分)已知m>1,直線,橢圓,分別為橢圓的左、右焦點.

(Ⅰ)當直線過右焦點時,求直線的方程;

(Ⅱ)設直線與橢圓交于兩點,,的重心分別為.若原點在以線段為直徑的圓內,求實數(shù)的取值范圍.

查看答案和解析>>


同步練習冊答案