4. 已知為直線.為平面.則下列命題中真命題的是 查看更多

 

題目列表(包括答案和解析)

 已知為直線,為平面,則下列命題中真命題的是

A.            B. 若,則         

C.            D.

查看答案和解析>>

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復平面中滿足|z-2|-|z+2|=1的復數z的軌跡是雙曲線;
(2)當a在實數集R中變化時,復數z=a2+ai在復平面中的軌跡是一條拋物線;
(3)已知函數y=f(x),x∈R+和數列an=f(n),n∈N,則“數列an=f(n),n∈N遞增”是“函數y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標系xoy中,將方程g(x,y)=0對應曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設平面直角坐標系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

下列命題中的真命題為   
(1)復平面中滿足|z-2|-|z+2|=1的復數z的軌跡是雙曲線;
(2)當a在實數集R中變化時,復數z=a2+ai在復平面中的軌跡是一條拋物線;
(3)已知函數y=f(x),x∈R+和數列an=f(n),n∈N,則“數列an=f(n),n∈N遞增”是“函數y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標系xoy中,將方程g(x,y)=0對應曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設平面直角坐標系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

下列命題:
(1)若函數f(x)=lg(x+
x2+a
),為奇函數,則a=1;
(2)函數f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),則
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點,動點P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過△ABC的內心.
以上命題為真命題的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

下列命題:
(1)若函數f(x)=lg(x+數學公式),為奇函數,則a=1;
(2)函數f(x)=|sinx|的周期T=π;
(3)已知數學公式,其中θ∈(π,數學公式),則數學公式
(4)在△ABC中,數學公式=a,數學公式=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點,動點P滿足:數學公式,λ∈(0,+∞),則直線AP一定通過△ABC的內心.
以上命題為真命題的是________.

查看答案和解析>>

一、 A C C D A  B D B A C    D C

二、13.   14. ①甲乙的平均數相同,均為85;② 甲乙的中位數相同,均為86;       ③乙的成績較穩(wěn)定,甲的成績波動性較大;……       15.       16.

三、17(Ⅰ)

            =

            =

得,

.

故函數的零點為.       ……………………………………6分

(Ⅱ)由

.又

得 

         , 

                  ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,,PB=BC=CD=1,AB=2

                            …………3分

(Ⅱ) 當M為PB的中點時CM∥平面PDA.

取PB中點N,連結MN,DN,可證MN∥DN且MN=DN

∴CM∥DN,∴CM∥平面PDA                                …………6分

 (Ⅲ)分別以BC、BA、BP所在直線為x軸、y軸、z軸,建立空間直角坐標系.

假設在BC邊上存在點Q,使得二面角A-PD-Q為  

 

同理,,可得

=,

解得………………………………………12分

19. (Ⅰ)設“世博會會徽”卡有張,由,得=6.

 故“海寶”卡有4張. 抽獎者獲獎的概率為.                 …………6分

(Ⅱ),    的分布列為

  

1

2

3

4

 

p

                                                                         ………………………………12分

20. (Ⅰ)證明 設

相減得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①設

由垂徑定理,

即       

化簡得  

軸平行時,的坐標也滿足方程.

故所求的中點的軌跡的方程為;

…………………………………………8分

②     假設過點P(1,1)作直線與有心圓錐曲線交于兩點,且P為的中點,則

         

由于 

直線,即,代入曲線的方程得

         即    

          得.

故當時,存在這樣的直線,其直線方程為;

時,這樣的直線不存在.        ………………………………12分

21. (Ⅰ)

得                   …………………………3分     

   

時,時,

故函數的單調增區(qū)間為,單調減區(qū)間為.   ………………………5分

(Ⅱ)由(Ⅰ)

得 

時,時,

處取得極大值,

……………………………………7分

(1)       當時,函數在區(qū)間為遞減 ,

(2)     時,

(3)       當時,函數在區(qū)間為遞增 ,

                                  

                                          ………………………………………12分

22. (Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想時,一切恒成立.

①當時,成立.

②設時,,則由

=

*時,

由①②知時,對一切,有.   ………………………………10分

解法2:假設

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)證法1:

,由(Ⅱ)知

                                     …………………………………14分

證法2:

猜想.數學歸納法證明

①當時,成立

②假設當時,成立

由①②對成立,下同證法1。

                                            …………………………………14分

 

 

 

 


同步練習冊答案