題目列表(包括答案和解析)
(本小題滿分13分)
如圖,已知雙曲線的右焦點(diǎn),點(diǎn)分別在的兩條漸近線上,軸,∥(為坐標(biāo)原點(diǎn)).
(1)求雙曲線的方程;
(2)過(guò)上一點(diǎn)的直線與直線相交于點(diǎn),與直線相交于點(diǎn),證明點(diǎn)在上移動(dòng)時(shí),恒為定值,并求此定值.
(本小題滿分13分)
如圖,雙曲線的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線分別為l1,l2,經(jīng)過(guò)右焦點(diǎn)F垂直于l1的直線分別交l1,l2于A,B兩點(diǎn).又已知該雙曲線的離心率.
(1)求證:,,依次成等差數(shù)列;
(2)若F(,0),求直線AB在雙曲線上所截得的弦CD的長(zhǎng)度.
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的
左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢
圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)
分別 為和
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.
(1)求雙曲線的離心率;
(2)如圖,為坐標(biāo)原點(diǎn),動(dòng)直線分別交直線于兩點(diǎn)(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個(gè)公共點(diǎn)的雙曲線?若存在,求出雙曲線的方程;若不存在,說(shuō)明理由.
一、選擇題:(本大題共10個(gè)小題;每小題5分,共50分。)
題 號(hào)
1
2
3
4
5
6
7
8
9
10
答 案
C
B
D
C
A
B
C
B
D
B
二、填空題:(本大題共5小題,每小題5分,共25分。)
11. 12. 13. 14. 15. [-1,1]
三、解答題:(本大題共6小題,共75分。)
16.解:(I)∵u∥v,∴即------(2分)
又---------(5分)
(II)由(I)知------------------------(7分)
------------------------------------------------(10分)
又
∴當(dāng)A-=0,即A= 時(shí),的最大值為--------------(12分)
17. 解:(Ⅰ)設(shè)A表示甲命中目標(biāo),B表示乙命中目標(biāo),則A、B相互獨(dú)立,且P(A)=,從而甲命中但乙未命中目標(biāo)的概率為
------------------------(5分)
(Ⅱ)設(shè)A1表示甲在兩次射擊中恰好命中k次,B1表示乙有兩次射擊中恰好命中l(wèi)次。依題意有
由獨(dú)立性知兩人命中次數(shù)相等的概率為
18. 解法一:(1)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A
∵BC⊥平面ACC
∴BM⊥A
平面A
∴CG=2,DC=1 在直角三角形CDG中,
,
即二面角B―A1D―A的大小為------------------------(6分)
(2)在線段AC上存在一點(diǎn)F,使得EF⊥平面A1BD其位置為AC中點(diǎn),證明如下:
∵A1B
∵由(1)BC⊥平面A
∵EF在平面A
同理可證EF⊥BD, ∴EF⊥平面A1BD------------------------(11分)
∵E為定點(diǎn),平面A1BD為定平面,點(diǎn)F唯一------------------------(12分)
解法二:(1)∵A1B
C(0,0,0) B(2,0,0) A(0,2,0)
C1(0,0,2) B1(2,0,2) A1(0,2,2)
D(0,0,1) E(1,0,2) ------------------------(2分)
設(shè)平面A1BD的法向量為
平面ACC
即二面角B―A1D―A的大小為 ------------------------(6分)
(2)在線段AC上存在一點(diǎn)F,設(shè)F(0,y,0)使得EF⊥平面A1BD
欲使EF⊥平面A1BD 由(2)知,當(dāng)且僅當(dāng)//---------------(9分)
∴存在唯一一點(diǎn)F(0,1,0)滿足條件. 即點(diǎn)F為AC中點(diǎn)------------(12分)
19.解:(1), -----------------(2分)
因?yàn)楹瘮?shù)在處的切線斜率為-3,
所以,即,------------------------(3分)
又得。------------------------(4分)
函數(shù)在時(shí)有極值,所以,-------(5分)
解得,------------------------------------------(7分)
所以.------------------------------------(8分)
(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零,------------------------------------(10分)
則得,
所以實(shí)數(shù)的取值范圍為.----------------------------------(13分)
20.解: (1)由知,數(shù)列{}為等差數(shù)列,設(shè)其公差為d,則d=,
故.------------------------(4分)
(2)由≥0,解得n≤5.故
當(dāng)n≤5時(shí),=||+||+…+||=++…+=;---------------(6分)
當(dāng)n>5時(shí),=||+||+…+||=++…+-…-=.--(8分)
(3)由于=,
所以,------(10分)
從而>0. ----------------------(11分)
故數(shù)列是單調(diào)遞增的數(shù)列,又因是數(shù)列中的最小項(xiàng),要使恒成立,則只需成立即可,由此解得m<8,由于m∈Z,
故適合條件的m的最大值為7. ------------------------(13分)
21. 解:(Ⅰ)設(shè)雙曲線方程為(,),
則,
,∴.------------------------(2分)
又在雙曲線上,∴.
聯(lián)立①②③,解得,.∴雙曲線方程為.--------(5分)
注:對(duì)點(diǎn)M用第二定義,得,可簡(jiǎn)化計(jì)算.
(Ⅱ),設(shè),,m:,則
由,得,.--------------------(7分)
由,得.
∴,..
由,,,---------------------(9分)
消去,,
得.------------------------(10分)
∵,函數(shù)在上單調(diào)遞增,
∴,∴.------------------------(11分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com