(2)簽約人數(shù)的分布列和數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

(2009•重慶模擬)某重點高校數(shù)學(xué)教育專業(yè)的三位畢業(yè)生甲、乙、丙參加了一所中學(xué)的招聘面試,面試合格者可以正式簽約,畢業(yè)生甲表示只要面試合格就簽約,畢業(yè)生乙和丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約,設(shè)每人面試合格的概率都是
13
,且面試是否合格互不影響,求:
(I)至少有1人面試合格的概率;
(II)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某企業(yè)準備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為
8
15
;
(1)求該小組中女生的人數(shù);
(2)假設(shè)此項專業(yè)技能測試對該小組的學(xué)生而言,每個女生通過的概率均為
3
4
,每個男生通過的概率均為
2
3
;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某企業(yè)準備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;
(1)求該小組中女生的人數(shù);
(2)假設(shè)此項專業(yè)技能測試對該小組的學(xué)生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某企業(yè)準備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;
(1)求該小組中女生的人數(shù);
(2)假設(shè)此項專業(yè)技能測試對該小組的學(xué)生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某企業(yè)準備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;
(1)求該小組中女生的人數(shù);
(2)假設(shè)此項專業(yè)技能測試對該小組的學(xué)生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

一.選擇題:BAAC  ADBC

解析:

1.,復(fù)數(shù)  對應(yīng)的點為,它與原點的距離是,故選B.

2.,但.故選A.

3.∵是等差數(shù)列,,,∴,

,故選A.

4.依題意知,,,又,,,故選C.

5.把直線向下平移二個單位,則點到直線的距離就相等了,故點的軌跡為拋物線,它的方程為,選A.

6.由三視圖知該工作臺是棱長為80的正方體上面圍上一塊矩形和兩塊直角三角形合

板,如右圖示,則用去的合板的面積故選D.

7.,,故選B.

8.由,可得: 知滿足事件A的區(qū)域的面積

,而滿足所有條件的區(qū)域的面積:,從而,

得:,故選C.

二.填空題:9.18 ; 10.2;11. ;12. ;13. ;14.;15.、

解析:9.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號應(yīng)成等差數(shù)列,將4位學(xué)生的座位號按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號為(6+30)÷2=18,故另一位同學(xué)的座位號為18.

10. ,令

從而展開式中的系數(shù)是,故填2.

11.

,故填.

12.設(shè)人經(jīng)過時間ts后到達點B,這時影長為AB=S,如圖由平幾的

知識可得,=,由導(dǎo)數(shù)的意義知人影長度

的變化速度v=(m/s)

13.曲線為拋物線段 借助圖形直觀易得

14. ,由柯西不等式得:

.

15.由切割線定理得,,

連結(jié)OC,則,,

三.解答題:

16.解:(1)---3分

∴函數(shù)的最小正周期為,值域為。--------------------------------------5分

(2)解法1:依題意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------12分

解法2:依題意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------12分

解法3:由,--------------------7分

兩邊平方得,,--------------------------8分

  ∴

--------------------------------------9分

,得--------------------10分

.---------------------------------12分

17.解:(1)不論點上的任何位置,都有平面垂直于平面.---1分

證明如下:由題意知,

    平面

平面   平面平面.------------------4分

(2)解法一:過點P作,垂足為,連結(jié)(如圖),則,

是異面直線所成的角.----------------------6分

中 ∵   ∴

,   ,      

 

中,

.----------8分

異面異面直線所成角的余弦值為.----------------9分

解法二:以為原點,所在的直線為x軸建立空間直角坐標系如圖示,則,,,

-----6分

∴異面異面直線所成角的余弦值為.-----9分

(3)由(1)知,平面

與平面所成的角,---------------------------10分

.------------------------------------11分

最小時,最大,這時,由--13分

,即與平面所成角的正切值的最大值.---14分

18.解:  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨立,

.------------------------------------------------------2分

(1)至少有1人面試合格的概率是

----------------------4分

(2)的可能取值為0,1,2,3.----------------------------------------------------------5分

     ∵

             =

              =---------------------------6分

     

              =

              =--------------------------------7分

      ---------------------8分

      ----------------------9分

的分布列是

0

1

2

3

-------------10分

的期望----------------------------------------12分

19.解:(1)當時,∵,∴,

,點,------------2分

設(shè)的方程為

  由過點F,B,C得

-----------------①

-----------------②

-------------------③----------------------------5分

由①②③聯(lián)立解得,,-----------------------7分

∴所求的的方程為-------------8分

(2)∵過點F,B,C三點,∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------④----------------------9分

∵BC的中點為,

∴BC的垂直平分線方程為-----⑤---------------------10分

由④⑤得,即----------------11分

∵P在直線上,∴

  ∴

-------------------------------------------13分

∴橢圓的方程為--------------------------------------------------------------14分

20.解:(1)當

同步練習(xí)冊答案