b) 設(shè).求的面積 查看更多

 

題目列表(包括答案和解析)

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設(shè)
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線經(jīng)過點(diǎn)Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當(dāng)|
OQ
|
取得最小值時(shí),求此雙曲線的方程.
(3)設(shè)F1為(2)中所求雙曲線的左焦點(diǎn),若A、B分別為此雙曲線漸近線l1、l2上的動(dòng)點(diǎn),且2|AB|=5|F1F|,求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

設(shè)橢圓的左焦點(diǎn)為F1(-2,0),直線與x軸交與點(diǎn)N(-3,0),過點(diǎn)N且傾斜角為30°的直線交橢圓于A,B兩點(diǎn).

   (1)求直線和橢圓的方程;

   (2)求證:點(diǎn)在以線段AB為直徑的圓上;

   (3)在直線上有兩個(gè)不重合的動(dòng)點(diǎn)C,D,以CD為直徑且過點(diǎn)F1的所有圓中,求面積最小的圓的半徑長(zhǎng)。

查看答案和解析>>

設(shè)橢圓的中心在坐標(biāo)原點(diǎn),A(2,0)、B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).

(Ⅰ)若,求k的值;

(Ⅱ)求四邊形AEBF面積的最大值.

查看答案和解析>>

設(shè)橢圓的左焦點(diǎn)為F1(-2,0),直線與x軸交與點(diǎn)N(-3,0),過點(diǎn)N且傾斜角為30°的直線l交橢圓于A,B兩點(diǎn).

(1)求直線l和橢圓的方程;

(2)求證:點(diǎn)F1(-2,0)在以線段AB為直徑的圓上;

(3)在直線l上有兩個(gè)不重合的動(dòng)點(diǎn)C,D,以CD為直徑且過點(diǎn)F1的所有圓中,求面積最小的圓的半徑長(zhǎng).

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-2,0)、B(2,0),M是動(dòng)點(diǎn),且直線MA與直線MB的斜率之積為-數(shù)學(xué)公式,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程;
(II )過定點(diǎn)T(-1,0)的動(dòng)直線l與曲線C交于P,Q兩點(diǎn),是否存在定點(diǎn)S(s,0),使得數(shù)學(xué)公式為定值,若存在求出s的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

一、1――12    DBDCD    CABAC    DD

二、13.810     14. 6    15. 420    16.

三、解答題

17.解(I)由,得

,得

所以

(II)由正弦定理得

所以的面積

18.解:

      

(I)

6中情況

所以函數(shù)有零點(diǎn)的概率為

(II)對(duì)稱軸,則

函數(shù)在區(qū)間上是增函數(shù)的概率為

19.解:(I)證明:由已知得:

  

(II)證明:取AB中點(diǎn)H,連結(jié)GH,FH,

(由線線平行證明亦可)

(III)

20.解(I)

 

(II)

時(shí),是減函數(shù),則恒成立,得

(若用,則必須求導(dǎo)得最值)

21.解:(I)由,得

解得(舍去)

(II)

22.(I)由題設(shè),及,不妨設(shè)點(diǎn),其中,于點(diǎn)A 在橢圓上,有,即,解得,得

直線AF1的方程為,整理得

由題設(shè),原點(diǎn)O到直線AF1的距離為,即

代入上式并化簡(jiǎn)得,得

(II)設(shè)點(diǎn)D的坐標(biāo)為

當(dāng)時(shí),由知,直線的斜率為,所以直線的方程為

,其中,

點(diǎn),的坐標(biāo)滿足方程組

將①式代入②式,得

整理得

于是

由①式得

,將③式和④式代入得

代入上式,整理得

當(dāng)時(shí),直線的方程為,的坐標(biāo)滿足方程組

,所以,由知,

,解得,這時(shí),點(diǎn)D的坐標(biāo)仍滿足

綜上,點(diǎn)D的軌跡方程為

 


同步練習(xí)冊(cè)答案