(II) 求證:面(III) 求四棱錐D-ABCE的體積 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐P-ABCD的底面為矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD
(I)求證:平面PAD⊥平面PCD
(II)試在平面PCD上確定一點(diǎn) E 的位置,使|
AE
|最小,并說(shuō)明理由;
(III)當(dāng)AD=AB時(shí),求二面角A-PC-D的余弦值.

查看答案和解析>>

如圖,四棱錐P-ABCD的底面為矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD
(I)求證:平面PAD⊥平面PCD
(II)試在平面PCD上確定一點(diǎn) E 的位置,使||最小,并說(shuō)明理由;
(III)當(dāng)AD=AB時(shí),求二面角A-PC-D的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),點(diǎn)F在PB上,EF⊥PB.
(I)求證:PA∥平面BDE;
(II)求證:PB⊥平面DEF;
(III)求二面角C-PB-D的大。

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),點(diǎn)F在PB上,EF⊥PB.
(I)求證:PA∥平面BDE;
(II)求證:PB⊥平面DEF;
(III)求二面角C-PB-D的大。

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),點(diǎn)F在PB上,EF⊥PB.
(I)求證:PA平面BDE;
(II)求證:PB⊥平面DEF;
(III)求二面角C-PB-D的大小.
精英家教網(wǎng)

查看答案和解析>>

一、1――12    DBDCD    CABAC    DD

二、13.810     14. 6    15. 420    16.

三、解答題

17.解(I)由,得

,得

所以

(II)由正弦定理得

所以的面積

18.解:

      

(I)

6中情況

所以函數(shù)有零點(diǎn)的概率為

(II)對(duì)稱軸,則

函數(shù)在區(qū)間上是增函數(shù)的概率為

19.解:(I)證明:由已知得:

  

(II)證明:取AB中點(diǎn)H,連結(jié)GH,FH,

(由線線平行證明亦可)

(III)

20.解(I)

 

(II)

時(shí),是減函數(shù),則恒成立,得

(若用,則必須求導(dǎo)得最值)

21.解:(I)由,得

解得(舍去)

(II)

22.(I)由題設(shè),及,不妨設(shè)點(diǎn),其中,于點(diǎn)A 在橢圓上,有,即,解得,得

直線AF1的方程為,整理得

由題設(shè),原點(diǎn)O到直線AF1的距離為,即

代入上式并化簡(jiǎn)得,得

(II)設(shè)點(diǎn)D的坐標(biāo)為

當(dāng)時(shí),由知,直線的斜率為,所以直線的方程為

,其中,

點(diǎn),的坐標(biāo)滿足方程組

將①式代入②式,得

整理得

于是

由①式得

,將③式和④式代入得

代入上式,整理得

當(dāng)時(shí),直線的方程為的坐標(biāo)滿足方程組

,所以,由知,

,解得,這時(shí),點(diǎn)D的坐標(biāo)仍滿足

綜上,點(diǎn)D的軌跡方程為

 


同步練習(xí)冊(cè)答案