題目列表(包括答案和解析)
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實數(shù),使對任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因為,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當(dāng)時,有,當(dāng)時,有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當(dāng)時,恒有;當(dāng)時,恒有;
故使命題成立的正整數(shù)m的最大值為5
如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對所有,恒成立,求實數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,
得
第三問
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時,可求得,命題成立; ……………2分
②假設(shè)當(dāng)時,命題成立,即有,……………………1分
則當(dāng)時,由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時,命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即
.……………2分
由題意,有. 所以,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com