9.函數(shù)的定義域為 查看更多

 

題目列表(包括答案和解析)

函數(shù)的定義域為D,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]上的值域為[
a
2
b
2
]
,那么就稱函數(shù)y=f(x)為“成功函數(shù)”,若函數(shù)f(x)=logc{cx+t)(c>0,c≠1)是“成功函數(shù)”,則t的取值范圍為( 。

查看答案和解析>>

函數(shù)的定義域為R,且滿足f(x)是偶函數(shù),f(x-1)是奇函數(shù),若f(
1
2
)=9
,則f(
25
2
)
=( 。

查看答案和解析>>

函數(shù)的定義域為R,若都是奇函數(shù),則(    )         

(A) 是偶函數(shù)         (B) 是奇函數(shù) 

(C)        (D) 是奇函數(shù)

查看答案和解析>>

函數(shù)的定義域為

A.           B.()            C.()           D.[)

查看答案和解析>>

(12分)函數(shù)的定義域為集合,關(guān)于的不等式的解集為,求使的實(shí)數(shù)的取值范圍.

查看答案和解析>>

一、選擇題

1~4   BBCA    5~8   ADCD

二、填空題

9、      10、    =      11、        12.   42  ;

13.  2或        14.        15.

三、解答題

16(本小題滿分12分)

1)

    ………………4分

  2)當(dāng)單調(diào)遞減,故所求區(qū)間為      ………………8分

   (3)

       ………………12分

17(本題滿分14分)

解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對稱,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

極小

極大

.  …………12分

18

證明:(I)在正中,的中點(diǎn),所以

,,,所以

,所以.所以由,有

 (II)取正的底邊的中點(diǎn),連接,則

,所以

如圖,以點(diǎn)為坐標(biāo)原點(diǎn),軸,軸,

建立空間直角坐標(biāo)系.設(shè),則有

,,,,.再設(shè)是面的法向量,則有

,即,可設(shè)

是面的法向量,因此

,

所以,即平面PAB與平面PDC所成二面角為

(Ⅲ)由(II)知,設(shè)與面所成角為,則

所以與面所成角的正弦值為

 

19(本題滿分14分)

20解:(I)建立圖示的坐標(biāo)系,設(shè)橢圓方程為依題意,2a=4,

橢圓方程為………………………………2分

F(-1,0)將x=-1代入橢圓方程得

∴當(dāng)彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

  • 又點(diǎn)M異于頂點(diǎn)A1,A2,∴-2<x0<2,

    由P、M、A1三點(diǎn)共線可得P

    ………………………8分

    …………………12分

    ∴P、A2、N三點(diǎn)共線,∴直線A2M與NA2不垂直,

    ∴點(diǎn)A2不在以MN為直徑的圓上…………………………14分

     

     

    21.解:(I)  .注意到,即,

    .所以當(dāng)變化時,的變化情況如下表:

    +

    0

    遞增

    極大值

    遞減

    遞減

    極小值

    遞增

     

    所以的一個極大值,的一個極大值..

    (II) 點(diǎn)的中點(diǎn)是,所以的圖象的對稱中心只可能是.

    設(shè)的圖象上一點(diǎn),關(guān)于的對稱點(diǎn)是..也在的圖象上, 因而的圖象是中心對稱圖形.

    (III) 假設(shè)存在實(shí)數(shù)、.,.

    , 當(dāng)時, ,而.故此時的取值范圍是不可能是.

    ,當(dāng)時, ,而.故此時的取值范圍是不可能是.

    ,由的單調(diào)遞增區(qū)間是,知的兩個解.而無解. 故此時的取值范圍是不可能是.

    綜上所述,假設(shè)錯誤,滿足條件的實(shí)數(shù)、不存在.

     

     

     

     


    同步練習(xí)冊答案