11. 雙曲線的離心率e=3/2.則k= . 查看更多

 

題目列表(包括答案和解析)

已知雙曲線的離心率e<2,則k的取值范圍是

[  ]

A.k<0或k>3
B.-3<k<0
C.-12<k<0
D.-8<k<3

查看答案和解析>>

雙曲線的離心率e∈(1,2),則k的取值范圍為

[  ]

A.(-∞,0)

B.(-12,0)

C.(-3,0)

D.(-60,-12)

查看答案和解析>>

雙曲線的離心率e∈(1,2),則k的取值范圍是

[  ]

A.(-∞,0)

B.(-12,0)

C.(-3,0)

D.(-60,-12)

查看答案和解析>>

雙曲線的離心率e∈(1,2),則k的取值范圍是.

[  ]

A.(-6,6)

B.(-12,0)

C.(1,3)

D.(0,12)

查看答案和解析>>

雙曲線的離心率e∈(1,2),則k的取值范圍是( )
A.(-∞,0)
B.(-3,0)
C.(-12,0)
D.(-60,-12)

查看答案和解析>>

 

一、選擇題 (每題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

小計

答案

D

D

B

C

C

C

B

C

A

C

 

二、填空題:本大題共4小題,每小題5分,共20.

11. -5  12.7  13.21 14.例如:,分段函數(shù)也可(3分);=a/3.(2分)

 

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

15.(12分)

已知:函數(shù)().解不等式:.

解:1)當(dāng)時,即解,(2分)

即,(4分)不等式恒成立,即;(6分)

2)當(dāng)時,即解(8分),即,(10分)因為,所以.(11分)

由1)、2)得,原不等式解集為.(12分)

16.(本小題滿分12分)

解:1)

              。ǎ卜郑            。ǎ捶郑

(6分)

.(8分)

當(dāng)時(9分),取最大值.(10分)

2)當(dāng)時,,即,(11分)

解得,.(12分)

17.(本小題滿分14分)

1)證明:連接AC.

∵點(diǎn)A是點(diǎn)P在底面AC上的射影,(1分)

∴PA^面AC.(2分)

PC在面AC上的射影是AC.

正方形ABCD中,BD^AC,(3分)

∴BD^PC.(4分)

2)解:連接OS.

∵BD^AC,BD^PC,

又AC、PC是面PAC上的兩相交直線,

∴BD^面PAC. (6分)

∵OSÌ面PAC,

∴BD^OS.(7分)

正方形ABCD的邊長為a,BD=,(8分)

∴DBSD的面積.(9分)

OS的兩個端點(diǎn)中,O是定點(diǎn),S是動點(diǎn).

∴當(dāng)取得最小值時,OS取得最小值,即OS^PC.(10分)

∵PC^BD, OS、BD是面BSD中兩相交直線,

∴PC^面BSD.(12分)

又PCÌ面PCD,∴面BSD^面PCD.(13分)

∴面BSD與面PCD所成二面角的大小為90°.(14分)

18.(本小題滿分14分)

1)解:設(shè)S(x,y),SA斜率=,SB斜率=,(2分)

由題意,得,(4分)

經(jīng)整理,得.(6分,未指出x的范圍,扣1分)

點(diǎn)S的軌跡C為雙曲線(除去兩頂點(diǎn)).(7分)

2)解:假設(shè)C上存在這樣的兩點(diǎn)P(x1,y1)和Q(x2,y2),則PQ直線斜率為-1,

且P、Q的中點(diǎn)在直線x-y-1=0上.

設(shè)PQ直線方程為:y=-x+b,

由整理得.(9分)

其中時,方程只有一個解,與假設(shè)不符.

當(dāng)時,D>0,D=

=,

所以,(*)(10分)

又,所以,代入y=-x+b,

得,

因為P、Q中點(diǎn)在直線x-y-1=0上,

所以有:,整理得,(**)(11分)

解(*)和(**),得-1<b<0,0<t<1,(13分)

經(jīng)檢驗,得:當(dāng)t取(0,1)中任意一個值時,曲線C上均存在兩點(diǎn)關(guān)于直線x-y-1=0對稱.(14分)

19.(本小題滿分14分)  

解:甲選手勝乙選手的局?jǐn)?shù)作為隨機(jī)變量ξ,它的取值共有0、1、2、3四個值.

1)當(dāng)ξ=0時,本場比賽共三局,甲選手連負(fù)三局,

P(ξ=0)=(1-0.6)3=0.064;(2分)

2)當(dāng)ξ=1時,本場比賽共四局,甲選手負(fù)第四局,且前三局中,甲勝一局,

P(ξ=1)=;(4分)

3)當(dāng)ξ=2時,本場比賽共五局,甲選手負(fù)第五局,且前四局中,甲勝二局,

P(ξ=2)=; (6分)

4)當(dāng)ξ=3時,本場比賽共三局、或四局、或五局.其中共賽三局時,甲連勝這三局;共賽四局時,第四局甲勝,且前三局中甲勝兩局;共賽五局時,第五局甲勝,且前四局中甲勝兩局;

P(ξ=3)==0.68256(8分)

ξ的概率分布列為:

ξ

0

1

2

3

P

0.064

0.1152

0.13824

0.68256

(10分)

Eξ=0´P(ξ=0)+ 1´ P(ξ=1)+2´ P(ξ=2)+3´ P(ξ=3)    (12分)

=0´0.064+1´0.1152+2´0.13824+3´0.68256=2.43926»2.4394.(14分)

 

20.(本小題滿分14分)

解:(1)由題意知,(1分)

得,(3分)∴ (5分)                       

(2)(6分)

     (8分)                  

(3)設(shè)存在S,P,r,(9分)

          (10分)                        

即 

 (*)   (12分)        

因為s、p、r為偶數(shù)

1+2,(*)式產(chǎn)生矛盾.所以這樣的三項不存在.(14分)

       以上答案及評分標(biāo)準(zhǔn)僅供參考,如有其它解法請參照給分.

 


同步練習(xí)冊答案