16.下列結(jié)論: 查看更多

 

題目列表(包括答案和解析)

下列結(jié)論:①(3)′=0,②(sinx)′=cosx,③(ex)′=ex,④(lnx)′=
1
x
,其中正確的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

下列結(jié)論:①已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題;②函數(shù)y=
|x|
x2+1
的最小值為
1
2
且它的圖象關(guān)于y軸對稱;③函數(shù)f(x)=lnx+2x-6在定義域上有且只有一個零點.其中正確命題的序號為
 
.(把你認為正確的命題序號都填上)

查看答案和解析>>

下列結(jié)論:
①當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標(biāo)準方程是x2=
4
3
y
;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個數(shù)是
 

查看答案和解析>>

下列結(jié)論:
①若命題p:存在x∈R,使得tanx=1;命題q:對任意x∈R,x2-x+1>0,則命題“p且?q”為假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0.則l1⊥l2的充要條件為
ab
=-3

③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1則x2-3x+2≠0”;
其中正確結(jié)論的序號為
 

查看答案和解析>>

下列結(jié)論:
①若命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p∧?q”是假命題;
②某校在一次月考中約有1000人參加考試,數(shù)學(xué)考試的成績,統(tǒng)計結(jié)果顯示數(shù)字考試成績在70分到110分之間的人數(shù)約為總?cè)藬?shù)的
3
5
,則此次月考中數(shù)學(xué)考試成績不低于110分的學(xué)生約有200人;
③在線性回歸分析中,殘差的平方和越小,說明模型的擬合效果越好;
④對分類變量X與Y,它們的隨機變量K2的觀測值為k,若k越大,則“X與Y有關(guān)系”的把握程度越大,其中結(jié)論正確的個數(shù)為
(  )
A、4B、3C、2D、1

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DBBA    BCBA

二、填空題:本大題共4小題,每小題4分,共16分。

13.2    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

      19.(I)解:取CE中點P,連結(jié)FP、BP,

      ∵F為CD的中點,

      ∴FP//DE,且FP=…………2分

      又AB//DE,且AB=

      ∴AB//FP,且AB=FP,

      ∴ABPF為平行四邊形,∴AF//BP!4分

      又∵AF平面BCE,BP平面BCE,

      ∴AF//平面BCE。 …………6分

         (II)∵△ACD為正三角形,∴AF⊥CD。

      ∵AB⊥平面ACD,DE//AB,

      ∴DE⊥平面ACD,又AF平面ACD,

      ∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

      ∴AF⊥平面CDE。

      又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

      ∴平面BCE⊥平面CDE。 …………12分

      20.解:(I)由題意知

         (II)

                

      的最小值為10。 …………12分

      21.解:(I)…………1分

         (II)

      由條件得 …………3分

        …………4分

         (III)由(II)知

      ①當(dāng)時,

      ②當(dāng)時,

      ③當(dāng)時,

      綜上所述:當(dāng)單調(diào)減區(qū)間為單調(diào)增區(qū)間為

       …………12分

      22.解:(I)設(shè)橢圓的方程為

      …………4分

         (II)

      …………6分

      交橢圓于A,B兩點,

        …………8分

         (3)設(shè)直線MA、MB的斜率分別為k1,k2,則問題只需證明

      、MB與x軸圍成一個等腰三角形。 …………14分

       

       

       


      同步練習(xí)冊答案