C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細(xì)參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因?yàn)殛幱安糠衷诩?sub>中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當(dāng)時(shí),則,由當(dāng)時(shí),得,,又是奇函數(shù),,所以,即

10.∵ ,

    ∴ ,選擇A

11.在A中,由圖像看,直線應(yīng)與軸的截距;在B圖中,經(jīng)過是錯(cuò)誤的;在D中,經(jīng)過是錯(cuò)誤的,選擇C

12.根據(jù)奇函數(shù)圖像關(guān)于原點(diǎn)對稱,作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,且,,∴,,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價(jià)于,或

17.解:∵,

,,---------6分

,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對應(yīng)法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對應(yīng)法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時(shí),則;------------7分

(ii)                  若時(shí),則.--------11分

綜上所述:實(shí)數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設(shè)任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設(shè)任意,且時(shí),

,

,∴ ,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,-----------2分

又  ---------①

 ∴   

  即  ---------②-----------3分

由①、② 得:,,-----------5分

(2) ,----------6分

  (i)當(dāng)時(shí),函數(shù)的最小值為;-----8分

(ii)當(dāng)時(shí),函數(shù)的最小值為;---10分

(iii)當(dāng)時(shí),函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當(dāng)時(shí),方程①無解,∴當(dāng)時(shí),無迭代不動(dòng)點(diǎn);(ii)當(dāng)時(shí),方程①有無數(shù)多解,∴當(dāng)時(shí),也無迭代不動(dòng)點(diǎn);(iii)當(dāng)時(shí),方程①有唯一解有迭代不動(dòng)點(diǎn).-------------6分

(2)設(shè),顯然時(shí),不滿足關(guān)系式,于是,則:

.------8分

……

即:,比較對應(yīng)的系數(shù):解之:,所以.----------14分.


同步練習(xí)冊答案