13.等腰直角三角形ABC的三個頂點在同一球面上.∠BAC=90°.AB=AC=.若球心O到平面ABC的距離為1.則該球的半徑為 ,球的表面積為 . 查看更多

 

題目列表(包括答案和解析)

等腰直角三角形ABC的三個頂點在同一球面上,∠BAC=90°,AB=AC=,若球心O到平面ABC的距離為 1,則該球的半徑為________;球的表面積為_________.

查看答案和解析>>

等腰直角三角形ABC的三個頂點在同一球面上,∠BAC=90°,AB=AC=.若球心O到平面ABC的距離為1,則該球的半徑為___________;球的表面積為___________.

查看答案和解析>>

有下列幾個命題:①若都是非零向量,則“”是“”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是;③在平面直角坐標系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為(0,-1);④設,為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足不共線,,||=||,則||的值一定等于以,為鄰邊的平行四邊形的面積.其中正確命題的序號是    .(寫出全部正確結(jié)論的序號)

查看答案和解析>>

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為(0,-1);④設
a
b
,
c
為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標系xoy中,四邊形ABCD的邊ABDC,ADBC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為(0,-1);④設
a
,
b
,
c
為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是______.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

 

一、選擇題

1.B  2.C  3.C  4.C  5.D  6.A  7.D  8.A

二、填空題

9.-8   10.(-1,-2)   11.   12.(2分);2(3分)

13.(3分)   14.3.5

三、解答題

15.解:(Ⅰ)由已知得 ………………2分

  ………………4分

在三角形ABC中,C=60° ………………6分

(Ⅱ)∵  …………8分

又∵   ………………9分

∴  ………………11分

∴   ………………13分(少一組值扣1分)

16.[解法一](Ⅰ)證:在直三棱柱ABC―A1B1C1中,AC//A1C1  ………………2分

又平面ACD   ∴A1C1//平面ACD  ………………4分

(Ⅱ)在直三棱柱ABC―A1B1C1中,A1A⊥平面ABC

∴A1A⊥AC    ………………6分    又∠BAC=90°   ∴AC⊥AB

∴AC⊥平面A1ABB1  ………………8分

又A1D平面A1ABB1,  ∴AC⊥A1D

∴異面直線AC與A1D所成的角大小為  ………………9分

(Ⅲ)∵△A1B1D和△ABD都為等腰直角三角形,∴∠A1DB1=∠ADB=45°

∴∠A1DA=90°即  A1D⊥AD  …………11分   由(Ⅱ)知A1D⊥AC,

∴A1D⊥平面ACD  ……………………14分

[解法二]向量法(略)

17.解:(Ⅰ)圓心坐標C(-1,2),半徑。  ………………3分(圓心橫縱坐標及半徑各1分)

   (Ⅱ)∵切線在兩坐標軸上的截距相等且不為零,

    設直線方程  ………………4分

∵圓C:

∴圓心C(-1,2)到切線的距離等于圓半徑,

即:   ………………6分

∴a=-1或a=3,

所求切線方程為:

(Ⅲ)∵切線PM與半徑CM垂直,設P(x,y)

∴|PM|2=|PC|2-|CM|2  ………………10分

∴  ………………11分

所以點P的軌跡方程為     ………………13分

18.(Ⅰ)證明:∵      

   ……………………1分

  ……………………3分

∴數(shù)列{bn}是首項為2,公比為2的等比數(shù)列。  ………………4分

(Ⅱ)解:   ………………5分

由(Ⅰ)得    …………7分

∴   ………………8分

(Ⅲ)由(Ⅱ)可得   ………………9分

利用錯位相減法可得,  ………………14分

19.解:(Ⅰ)由已知得  ………………2分

可得    ………………4分

 

(0,x1

x1

(x1,x2)

x2

(x2,2)

+

0

0

+

極大值

極小值

所以為的極大值,為的極小值.……6分

(Ⅱ)由(Ⅰ)

…………9分

……12分

……13分

20.解:(Ⅰ)由題意知

則雙曲線方程為:……3分

(Ⅱ)設

設PQ方程為:代入雙曲線方程可得:

由于P、Q都在雙曲線的右支上,所以, 

……4分

……5分

由于

由……6分

……7分

此時

     ……8分

(Ⅲ)存在實數(shù),滿足題設條件

……9分

   把(3)(4)代入(2)得:……(5)

由(1)(5)得:……11分

,滿足題設條件.    ………………13分

 

 

 

 


同步練習冊答案