題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
一、選擇題: BBDBA BBBCB AC
二、填空題: 13.6 14. 15.1 16. ②③
三.解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
17. 解:(1)∵ , 且與向量所成角為
∴ , ∴ ,
又,∴ ,即。
(2)由(1)可得:
∴
∵ ,
∴ ,
∴ ,
∴ 當(dāng)=1時(shí),A=
∴AB=2, 則
18.解:(1)P=
(2)隨機(jī)變量的取值為0, 1, 2, 3.
由n次獨(dú)立重復(fù)試驗(yàn)概率公式得
隨機(jī)變量的分布列是
0
1
2
3
的數(shù)學(xué)期望是
19.證明(Ⅰ)
AB∥DC,DC平面PAD.
DCPD DCAD,
PDA為二面角P-CD-B的平面角.
故PDA=45° PA=AD=3,
APD=45°. PAAD.
又PAAB ,PA平面ABCD.
(Ⅱ)證法一:延長(zhǎng)DA,CE交于點(diǎn)N,連結(jié)PN,
由折疊知又.
,
又由(1)知,
為二面角的平面角.………9分
在直角三角形中,
,.
即平面PEC和平面PAD所成銳二面角為30°.
證法二:如圖建立空間直角坐標(biāo)系 ,
則
,
設(shè)為平面的法向量,則
,可設(shè),又平面的法向量,
. .
20.解:(I)依題意得
(II)依題意得,上恰有兩個(gè)相異實(shí)根,
令
故在[0,1]上是減函數(shù),在上是增函數(shù),
21.解:(1)直線方程為與聯(lián)立得
(2)設(shè)弦AB的中點(diǎn)M的坐標(biāo)為依題意有
所以弦AB的中點(diǎn)M的軌跡是以為中心,
焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為1,短軸長(zhǎng)為的橢圓。
(3)設(shè)直線AB的方程為
代入整理得
直線AB過(guò)橢圓的左焦點(diǎn)F,方程有兩個(gè)不等實(shí)根。
記中點(diǎn)
則
的垂直平分線NG的方程為
令得
點(diǎn)G橫坐標(biāo)的取值范圍為
22.解:(I)把
(II), ①
②
①式減②式得,, 變形得,
又因?yàn)?sub>時(shí)上式也成立。
所以,數(shù)列為公比的等比數(shù)列,
所以
(III),
所以
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com