題目列表(包括答案和解析)
(19)(本小題滿分12分)
為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了n株沙柳,各株沙柳成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望,標(biāo)準(zhǔn)差為。
(Ⅰ)求n,p的值并寫出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補(bǔ)種,求需要補(bǔ)種沙柳的概率
19(本小題滿分12分)
P是以為焦點(diǎn)的雙曲線C:(a>0,b>0)上的一點(diǎn),已知=0,.
(1)試求雙曲線的離心率;
(2)過點(diǎn)P作直線分別與雙曲線兩漸近線相交于P1、P2兩點(diǎn),當(dāng),= 0,求雙曲線的方程.
(19) (本小題滿分12分)某廠家根據(jù)以往的經(jīng)驗(yàn)得到有關(guān)生產(chǎn)銷售規(guī)律如下:每生產(chǎn)(百臺(tái)),其總成本為(萬元),其中固定成本2萬元,每生產(chǎn)1百臺(tái)需生產(chǎn)成本1萬元(總成本固定成本生產(chǎn)成本);銷售收入(萬元)滿足:(Ⅰ)要使工廠有盈利,求的取值范圍;
(Ⅱ)求生產(chǎn)多少臺(tái)時(shí),盈利最多?
三、解答題 :(本大題共5小題,每小題12分,共60分。解答應(yīng)寫出證明過程或演算步驟)
19.(本小題滿分12分)
對(duì)某校110個(gè)小學(xué)生進(jìn)行心理障礙測試得到如下的列聯(lián)表:
|
焦慮 |
說謊 |
懶惰 |
總計(jì) |
女生 |
5 |
10 |
15 |
30 |
男生 |
20 |
10 |
50 |
80 |
總計(jì) |
25 |
20 |
65 |
110 |
通過計(jì)算說明在這三種心理障礙中哪一種與性別關(guān)系最大?
(2012年高考陜西卷理科19) (本小題滿分12分)
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,,求直線的方程.
2009年曲靖一種高考沖刺卷理科數(shù)學(xué)(一)
一、
1 B
10B
1依題意得,所以故,因此選B
2依題意得。又在第二象限,所以,
,故選C
3
且,
因此選A
4 由
因?yàn)?sub>為純虛數(shù)的充要條件為
故選A
5如圖,
故選A
6.設(shè)
則
故選D
7.設(shè)等差數(shù)列的首項(xiàng)為,公差,因?yàn)?sub>成等比數(shù)列,所以,即,解得,故選D
8.由,所以分之比為2,設(shè)(,則,又點(diǎn)在圓上,所以,即+-4,化簡得=16,故選C
9.長方體的中心即為球心,設(shè)球半徑為,則
于是兩點(diǎn)的球面距離為故選B
10.先分別在同一坐標(biāo)系上畫出函數(shù)與的圖象(如圖1)
觀察圖2,顯然,選B
11.依題意,
故
故選C
12.由題意知,
①
代入式①得
由方程的兩根為
又
即故選A。
二、
13.5 14.7 15.22 16.①
13.5.線性規(guī)劃問題先作出可行域,注意本題已是最優(yōu)的特定參數(shù)的特點(diǎn),可考慮特殊的交點(diǎn),再驗(yàn)證,由題設(shè)可知
應(yīng)用運(yùn)動(dòng)變化的觀點(diǎn)驗(yàn)證滿足為所求。
14.7. 由題意得又
因此A是鈍角,
15.22,連接,的周章為
16.①當(dāng)時(shí),,取到最小值,因次,是對(duì)稱軸:②當(dāng)時(shí),因此不是對(duì)稱中心;③由,令可得故在上不是增函數(shù);把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號(hào)是①。
三
17.(1)在上單調(diào)遞增,
在上恒成立,即在上恒成立,即實(shí)數(shù)的取值范圍
(2)由題設(shè)條件知在上單調(diào)遞增。
由得,即
即的解集為
又的解集為
18.(1)過作子連接
側(cè)面
。
故是邊長為2的等邊三角形。又點(diǎn),又是在底面上的射影,
(法一)(2)就是二面角的平面角,和都是邊長為2的正三角形,又即二面角的大小為45°
(3)取的中點(diǎn)為連接又為的中點(diǎn),,又,且在平面上,又為的中點(diǎn),又線段的長就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是
(法二)(2),以為軸、軸、軸建立空間直角坐標(biāo)系,則點(diǎn)設(shè)平面的法向量為,則,解得,取則,平面的法向量
向量所成角為45°故二面角的大小為45°,
(3)由,的中點(diǎn)設(shè)平面的法向量為,則,解得 則故到平面的距離為
19.(1)取值為0,1,2,3,4
的分布列為
0
1
2
3
4
P
(2)由
即
又
所以,當(dāng)時(shí),由得
當(dāng)時(shí),由得
即為所求‘
20.(1)在一次函數(shù)的圖像上,
于是,且
數(shù)列是以為首項(xiàng),公比為2的等比數(shù)列
(3) 由(1)知
21.(1)由題意得:
點(diǎn)Q在以M、N為焦點(diǎn)的橢圓上,即
點(diǎn)Q的軌跡方程為
(2)
設(shè)點(diǎn)O到直線AB的距離為,則
當(dāng)時(shí),等號(hào)成立
當(dāng)時(shí),面積的最大值為3
22.(1)
(2)由題意知
(3)等價(jià)證明
由(1)知
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com