(1)求證:.并求的長, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.
(1)求點A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

如圖,拋物線C1:y=ax2+bx+1的頂點坐標(biāo)為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點D交y軸于點A,交拋物線C2于點B,拋物線C2的頂點為P,求△DBP的面積
(3)如圖2,連接AP,過點B作BC⊥AP于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.
精英家教網(wǎng)

查看答案和解析>>

如圖,四邊形ABCD、BEFG均為正方形,
(1)如圖1,連接AG、CE,試判斷AG和CE的數(shù)量關(guān)系和位置關(guān)系并證明;
(2)將正方形BEFG繞點B順時針旋轉(zhuǎn)β角(0°<β<180°),如圖2,連接AG、CE相交于點M,連接MB,當(dāng)角β發(fā)生變化時,∠EMB的度數(shù)是否發(fā)生變化?若不變化,求出∠EMB的度數(shù);若發(fā)生變化,請說明理由.
(3)在(2)的條件下,過點A作AN⊥MB交MB的延長線于點N,請直接寫出線段CM與BN的數(shù)量關(guān)系:
CM=
2
BN
CM=
2
BN

查看答案和解析>>

已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足∠MAN=45°,連接MC,NC,MN.
(1)填空:與△ABM相似的三角形是△
NDA
NDA
,BM•DN=
a2
a2
;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的等量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

已知,如圖,正方形ABCD中,點E、F分別在邊BC、CD上,且∠EAF=45°,AG⊥EF于G,EG=2,F(xiàn)G=3,求AG的邊長.小萍同學(xué)靈活運用旋轉(zhuǎn)的知識,將圖形進行旋轉(zhuǎn)變換,巧妙地解答了此題.請按照小萍的思路,探究并解答下列問題:
(1)把△ADF繞點A順時針旋轉(zhuǎn)90°,得△ABH,請在圖中畫出旋轉(zhuǎn)后的圖形;
(2)判斷H、B、E三點是否在一條直線上,若在,請證明:△AEF≌△AEH;若不在,請說明理由;
(3)設(shè)AG=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

查看答案和解析>>


同步練習(xí)冊答案