(3)設(shè)點(diǎn)B關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B1.求△AB1B的面積. 查看更多

 

題目列表(包括答案和解析)

已知:拋物線的對(duì)稱軸為軸交于兩點(diǎn),與軸交于點(diǎn)其中、

(1)求這條拋物線的函數(shù)表達(dá)式.

(2)已知在對(duì)稱軸上存在一點(diǎn)P,使得的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo).

(3)若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D軸于點(diǎn)連接、.設(shè)的長(zhǎng)為,的面積為.求之間的函數(shù)關(guān)系式.試說(shuō)明是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

 


查看答案和解析>>

已知:拋物線的對(duì)稱軸為軸交于兩點(diǎn),與軸交于點(diǎn)其中、

(1)求這條拋物線的函數(shù)表達(dá)式.

(2)已知在對(duì)稱軸上存在一點(diǎn)P,使得的周長(zhǎng)最小.請(qǐng)求出點(diǎn)P的坐標(biāo).

(3)若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D軸于點(diǎn)連接、.設(shè)的長(zhǎng)為,的面積為.求之間的函數(shù)關(guān)系式.試說(shuō)明是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

拋物線l1:y=-x2+2x與x軸的交點(diǎn)為O、A,頂點(diǎn)為D,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱,與x軸的交點(diǎn)為O、B,頂點(diǎn)為C,線段CD交y軸于點(diǎn)E.
(1)求拋物線l2的頂點(diǎn)C的坐標(biāo)及拋物線l2的解析式;
(2)設(shè)P是拋物線l1上與D、O兩點(diǎn)不重合的任意一點(diǎn),Q點(diǎn)是P點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),試判斷以P、Q、C、D為頂點(diǎn)的四邊形是什么特殊的四邊形(直接寫出結(jié)論)?
(3)在拋物線l1上是否存在點(diǎn)M,使得S△ABM=S四邊形AOED?如果存在,求出M的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

拋物線l1:y=-x2+2x與x軸的交點(diǎn)為O、A,頂點(diǎn)為D,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱,與x軸的交點(diǎn)為O、B,頂點(diǎn)為C,線段CD交y軸于點(diǎn)E.
(1)求拋物線l2的頂點(diǎn)C的坐標(biāo)及拋物線l2的解析式;
(2)設(shè)P是拋物線l1上與D、O兩點(diǎn)不重合的任意一點(diǎn),Q點(diǎn)是P點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),試判斷以P、Q、C、D為頂點(diǎn)的四邊形是什么特殊的四邊形(直接寫出結(jié)論)?
(3)在拋物線l1上是否存在點(diǎn)M,使得S△ABM=S四邊形AOED?如果存在,求出M的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

關(guān)于x的二次函數(shù)y=-x2+(k2-4)x+2k-2以y軸為對(duì)稱軸,且與y軸的交點(diǎn)在x軸上方.

(1)求此拋物線的解析式,并在直角坐標(biāo)系中畫(huà)出函數(shù)的草圖;

(2)設(shè)A是y軸右側(cè)拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作AB垂直x軸于點(diǎn)B,再過(guò)點(diǎn)A作x軸的平行線交拋物線于點(diǎn)D,過(guò)D點(diǎn)作DC垂直x軸于點(diǎn)C, 得到矩形ABCD.設(shè)矩形ABCD的周長(zhǎng)為l,點(diǎn)A的橫坐標(biāo)為x,試求l關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)點(diǎn)A在y軸右側(cè)的拋物線上運(yùn)動(dòng)時(shí),矩形ABCD能否成為正方形.若能,請(qǐng)求出此時(shí)正方形的周長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案