(1)如圖.在△ABC中.∠A=2∠B.且∠A=.求證:a2=b(b+c). 證明: (2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2 倍.我們稱這樣的三角形為“倍角三角形 .(1)中的三角形是一個(gè)特殊的倍角三角形.那么對(duì)于任意的倍角三角形ABC.其中∠A=2∠B.關(guān)系式a2=b(b+c)是否仍然成立?若成立.證明你的結(jié)論,若不成立.請(qǐng)說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

閱讀下列材料,按要求解答問(wèn)題:

如圖1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過(guò)以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,a=b,得a2-b2=(b)2-b2=2b2=b·c.即a2-b2=bc.

于是,小明猜測(cè):對(duì)于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2-b2=bc都成立.

(1)如圖2,請(qǐng)你用以上小明的方法,對(duì)等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測(cè)是否正確,并寫(xiě)出驗(yàn)證過(guò)程;

(2)如圖3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請(qǐng)你證明;否則,請(qǐng)說(shuō)明理由;

(3)若一個(gè)三角形的三邊長(zhǎng)恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請(qǐng)直接寫(xiě)出這個(gè)三角形三邊的長(zhǎng),不必說(shuō)明理由.

查看答案和解析>>

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別用a,b,c表示.

(1)如圖,在△ABC中,∠A=2∠B,且∠A=60°.求證:a2=b(b+c);

(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.本題第一問(wèn)中的三角形是一個(gè)特殊的倍角三角形,那么對(duì)于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

閱讀下列材料,按要求解答問(wèn)題:

如圖2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過(guò)以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,ab,得a2b2=(b)2b2=2b2b·c.即a2b2 bc

于是,小明猜測(cè):對(duì)于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2b2bc都成立.

(1)如圖2-2,請(qǐng)你用以上小明的方法,對(duì)等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測(cè)是否正確,并寫(xiě)出驗(yàn)證過(guò)程;

(2)如圖2-3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請(qǐng)你證明;否則,請(qǐng)說(shuō)明理由;

(3)若一個(gè)三角形的三邊長(zhǎng)恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請(qǐng)直接寫(xiě)出這個(gè)三角形三邊的長(zhǎng),不必說(shuō)明理由.

 

查看答案和解析>>

閱讀下列材料,按要求解答問(wèn)題:
如圖2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過(guò)以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,ab,得a2b2=(b)2b2=2b2b·c.即a2b2 bc

于是,小明猜測(cè):對(duì)于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2b2bc都成立.
(1)如圖2-2,請(qǐng)你用以上小明的方法,對(duì)等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測(cè)是否正確,并寫(xiě)出驗(yàn)證過(guò)程;
(2)如圖2-3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請(qǐng)你證明;否則,請(qǐng)說(shuō)明理由;
(3)若一個(gè)三角形的三邊長(zhǎng)恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請(qǐng)直接寫(xiě)出這個(gè)三角形三邊的長(zhǎng),不必說(shuō)明理由.

查看答案和解析>>

閱讀下列材料,按要求解答問(wèn)題:
如圖2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過(guò)以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,ab,得a2b2=(b)2b2=2b2b·c.即a2b2 bc

于是,小明猜測(cè):對(duì)于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2b2bc都成立.
(1)如圖2-2,請(qǐng)你用以上小明的方法,對(duì)等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測(cè)是否正確,并寫(xiě)出驗(yàn)證過(guò)程;
(2)如圖2-3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請(qǐng)你證明;否則,請(qǐng)說(shuō)明理由;
(3)若一個(gè)三角形的三邊長(zhǎng)恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請(qǐng)直接寫(xiě)出這個(gè)三角形三邊的長(zhǎng),不必說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案