七.實踐探索 查看更多

 

題目列表(包括答案和解析)

(2012•延慶縣一模)如圖1,已知:已知:等邊△ABC,點D是邊BC上一點(點D不與點B、點C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點A順時針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實踐探索:
(1)請你仿照上面的思路,探索解決下面的問題:
如圖3,點D是等腰直角三角形△ABC邊上的點(點D不與B、C重合).求證:BD+DC>
2
AD.
(2)如果點D運動到等腰直角三角形△ABC外或內(nèi)時,BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點,且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

25、實踐探索題:在生產(chǎn)、生活中,我們會經(jīng)常遇到捆扎圓柱管的問題.下面,我們來探索捆扎時,所需要的繩子的長度(不計接頭部分)與圓柱管的半徑r之間的關(guān)系.
(1)當圓柱管的放置方式是“單層平放”時,截面如圖所示:

請你完成下表:

(2)當圓柱管的放置方式是“兩層疊放(每一個圓都和至少兩個圓外切)”時,截面如圖所示:

請你填寫下表:

(3)當圓柱管的個數(shù)為10時,放置方式有許多種,請你設(shè)計一種繩子長度最短的放置方式:畫出草圖,并計算繩子的長度.

查看答案和解析>>

如圖1,已知:已知:等邊△ABC,點D是邊BC上一點(點D不與點B、點C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點A順時針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實踐探索:
(1)請你仿照上面的思路,探索解決下面的問題:
如圖3,點D是等腰直角三角形△ABC邊上的點(點D不與B、C重合).求證:BD+DC>AD.
(2)如果點D運動到等腰直角三角形△ABC外或內(nèi)時,BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點,且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

實踐探索題:在生產(chǎn)、生活中,我們會經(jīng)常遇到捆扎圓柱管的問題.下面,我們來探索捆扎時,所需要的繩子的長度(不計接頭部分)與圓柱管的半徑r之間的關(guān)系.
(1)當圓柱管的放置方式是“單層平放”時,截面如圖所示:

請你完成下表:

(2)當圓柱管的放置方式是“兩層疊放(每一個圓都和至少兩個圓外切)”時,截面如圖所示:

請你填寫下表:

(3)當圓柱管的個數(shù)為10時,放置方式有許多種,請你設(shè)計一種繩子長度最短的放置方式:畫出草圖,并計算繩子的長度.

查看答案和解析>>

實踐探索題:
(1)拼一拼,畫一畫:請你用4個長為a,寬為b的矩形拼成一個大正方形,并且正中間留下一個洞,這個洞恰好是一個小正方形.
(2)用不同方法計算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?
(3)當拼成的這個大正方形邊長比中間小正方形邊長多3cm時,它的面積就多24cm2,求中間小正方形的邊長.

查看答案和解析>>


同步練習(xí)冊答案