(2)請證明:是的中點, 查看更多

 

題目列表(包括答案和解析)

證明:
(1)如圖1,△ABC中,AB=AC,延長BC至D,使CD=BC,點E在邊AC上,以CE、CD為鄰邊作?CDFE,過點C作CG∥AB交EF于點G.連接BG、DE.
①∠ACB與∠GCD有怎樣的數(shù)量關(guān)系?請說明理由.
②求證:△BCG≌△DCE.
(2)如圖2,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
①試說明AC=EF;
②求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

證明:
(1)如圖1,△ABC中,AB=AC,延長BC至D,使CD=BC,點E在邊AC上,以CE、CD為鄰邊作?CDFE,過點C作CG∥AB交EF于點G.連接BG、DE.
①∠ACB與∠GCD有怎樣的數(shù)量關(guān)系?請說明理由.
②求證:△BCG≌△DCE.
(2)如圖2,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
①試說明AC=EF;
②求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

證明:
(1)如圖1,△ABC中,AB=AC,延長BC至D,使CD=BC,點E在邊AC上,以CE、CD為鄰邊作?CDFE,過點C作CG∥AB交EF于點G.連接BG、DE.
①∠ACB與∠GCD有怎樣的數(shù)量關(guān)系?請說明理由.
②求證:△BCG≌△DCE.
(2)如圖2,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
①試說明AC=EF;
②求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請你將下面的證明過程補充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標系,使頂點A與坐標原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標;
(3)設(shè)正方形邊長OB為30,當EF最短時,直接寫出直線EF的解析式:______.

查看答案和解析>>

學完“證明(二)”一章后,老師布置了一道思考題:如圖,點M、N分別在正三角形ABC的邊BC.CA上,且BM=CN,AM、BN交于點Q。求證:∠BQM=60°。

(1)請你完成這道思考題;
(2)做完(1)后,同學們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC、CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?對②,③進行證明。(自己畫出對應(yīng)的圖形)

查看答案和解析>>


同步練習冊答案