題目列表(包括答案和解析)
(本小題滿分7分)
(1)(3分)計算:
(2)(4分)已知:如圖,在Rt△ABC和Rt△BAD中,AB為斜邊,AC=BD,BC,AD相交于點E.
求證:AE=BE.
(本小題滿分10分)
如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點D,∠B = 30°.
求證:1.(1)AD平分∠BAC,2.(2)若BD = ,求B E的長.
(本小題滿分10分)
學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 的值為( )A. B.1 C. D.2
(2)對于,∠A的正對值sad A的取值范圍是 .
(3)已知,其中為銳角,試求sad的值.
(本小題滿分7分)
已知:等邊三角形ABC
如圖1,P為等邊△ABC外一點,且∠BPC=120°.
試猜想線段BP、PC、AP之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,P為等邊△ABC內(nèi)一點,且∠APD=120°.求證:PA+PD+PC>BD
(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。
如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個結(jié)論:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長。
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com