題目列表(包括答案和解析)
(12分) 閱讀并解答問題
用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為,所以就有最小值1,即,只有當時,才能得到這個式子的最小值1.同樣,因為,所以有最大值1,即,只有在時,才能得到這個式子的最大值1.
(1)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(2)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
配方法可以用來解一元二次方程,還可以用它來解決很多問題。例如:因為,所以,即:有最小值1,此時;同樣,因為,所以,即有最大值6,此時 。
①當= 時,代數(shù)式有最 (填寫大或。┲禐 。②當= 時,代數(shù)式有最 (填寫大或。┲禐 。
③矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
(12分) 閱讀并解答問題
用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為,所以就有最小值1,即,只有當時,才能得到這個式子的最小值1.同樣,因為,所以有最大值1,即,只有在時,才能得到這個式子的最大值1.
(1)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(2)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
(12分) 閱讀并解答問題
用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為,所以就有最小值1,即,只有當時,才能得到這個式子的最小值1.同樣,因為,所以有最大值1,即,只有在時,才能得到這個式子的最大值1.
(1)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(2)當= 時,代數(shù)式有最 (填寫大或。┲禐 .
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com