A.當AB=BC時.OA=OB B.當AC⊥BD時,AC=BD C.當∠ABC=900時.它是正方形 D.圖中四個最小的三角形面積都相等 查看更多

 

題目列表(包括答案和解析)

25、在平面上有且只有4個點,這4個點中有一個獨特的性質:連接每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.
(1)如圖4,若等腰梯形ABCD的四個頂點是準等距點,且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點為準等距點,并寫出相等的線段.

查看答案和解析>>

(2013•河北一模)平面上有且只有4個點,這4個點中有一個獨特的性質:連接每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC.
(1)如圖3,若等腰梯形ABCD的四個頂點是準等距點,且AD∥BC.寫出相等的線段(不再添加字母);
(2)利用(1)的結論,求∠BCD的度數(shù).

查看答案和解析>>

(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質:連結每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.

 

(1)如圖,若等腰梯形ABCD的四個頂點是準等距點,且AD∥BC.

①寫出相等的線段(不再添加字母);

②求∠BCD的度數(shù).

(2)請再畫出一個四邊形,使它的四個頂點為準等距點,并寫出相等的線段.

 

查看答案和解析>>

.(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質:連結每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DAAC=BD.其實滿足這樣性質的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC

 

 

 

 

 

 

(1)如圖,若等腰梯形ABCD的四個頂點是準等距點,且ADBC

①寫出相等的線段(不再添加字母);

②求∠BCD的度數(shù).

 

 

(2)請再畫出一個四邊形,使它的四個頂點為準等距點,并寫出相等的線段.

 

 

 

查看答案和解析>>

.(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質:連結每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DAAC=BD.其實滿足這樣性質的圖形有很多,如圖2中AB、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、BC、O四個點,滿足OA=OB=OC=BC,AB=AC

 

 

 

 

 

 

(1)如圖,若等腰梯形ABCD的四個頂點是準等距點,且ADBC

①寫出相等的線段(不再添加字母);

②求∠BCD的度數(shù).

 

 

(2)請再畫出一個四邊形,使它的四個頂點為準等距點,并寫出相等的線段.

 

 

 

查看答案和解析>>


同步練習冊答案