如圖,在△ABC中,∠ACB=90°,CD⊥AB,
(1)圖1中共有
3
3
對相似三角形,寫出來分別為
△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD
△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD
(不需證明);
(2)已知AB=10,AC=8,請你求出CD的長;
(3)在(2)的情況下,如果以AB為x軸,CD為y軸,點D為坐標(biāo)原點O,建立直角坐標(biāo)系(如圖2),若點P從C點出發(fā),以每秒1個單位的速度沿線段CB運(yùn)動,點Q出B點出發(fā),以每秒1個單位的速度沿線段BA運(yùn)動,其中一點最先到達(dá)線段的端點時,兩點即刻同時停止運(yùn)動;設(shè)運(yùn)動時間為t秒是否存在點P,使以點B、P、Q為頂點的三角形與△ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.