9.如下圖.三角形紙片ABC中.∠C=90°.AC=5cm.BC=10cm.將紙片折疊.使點(diǎn)B 與點(diǎn)A重合.折痕為DE.則CD的長(zhǎng)為 查看更多

 

題目列表(包括答案和解析)

在如圖所示的三角形紙片ABC中,∠C=90°,∠B=30°,按如下步驟可以把這個(gè)直角三角形紙片分成三個(gè)全等的小直角三角形(圖中虛線表示折痕).①先將點(diǎn)B對(duì)折到點(diǎn)A,②將對(duì)折后的紙片再沿AD對(duì)折.

(1)由步驟①可以得到哪些等量關(guān)系?

(2)請(qǐng)證明△ACD≌△AED;

(3)按照這種方法能否將任意一個(gè)直角三角形分成三個(gè)全等的小三角形?

查看答案和解析>>

如圖①所示,將一個(gè)正三角形紙片沿著它的一條邊上的高剪開,得到如圖②所示的兩個(gè)全等的Rt△ABC、Rt△DEF

(1)根據(jù)正三角形的性質(zhì)可知:在圖②中,∠ABC=∠DEF=30°,ABDE=2AC=2DF.由此請(qǐng)你歸納一下在含30°角的直角三角形中,30°角所對(duì)的直角邊與斜邊之間的關(guān)系:

在含30°角的直角三角形中,30°角所對(duì)的直角邊________

(2)將這兩個(gè)直角三角形紙片按如圖③放置,使點(diǎn)B、D重合,點(diǎn)FBC上.固定紙片DEF,將△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)角α(0°<α<90°),使四邊形ACDE為以ED為底的梯形(如圖④所示),求此時(shí)α的值;

(3)猜想圖④中AECD之間的大小關(guān)系,并說明理由.

查看答案和解析>>

下圖①是邊長(zhǎng)分別為4和3的兩個(gè)等邊三角形紙片ABC和疊放在一起(C與重合).

(1)操作:固定△ABC,將△繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線交AB于點(diǎn)F(如圖②).

探究:在圖②中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.

(2)操作:將圖②中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,CF為∠ACB的平分線,平移后的△CDE設(shè)為△PQR(如圖③).

探究:設(shè)△PQR移動(dòng)的時(shí)間為xs,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)自變量x的取值范圍.

(3)操作:將圖①中△固定,將△ABC移動(dòng),使頂點(diǎn)C落在的中點(diǎn),邊BC交于點(diǎn)M,邊AC交于點(diǎn)N,設(shè)∠AC=α(30°<α<90°)(如圖④).

探究:在圖④中,線段M的值是否隨α的變化而變化?如果沒有變化,請(qǐng)求出M的值;如果有變化,請(qǐng)說明理由.

查看答案和解析>>

劉衛(wèi)同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,見圖①、②.圖①中,∠B=90°,∠A=30°,BC=6 cm;圖②中,∠D=90°,∠E=45°,DE=4 cm.圖③是劉衛(wèi)同學(xué)所做的一個(gè)實(shí)驗(yàn):他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動(dòng).在移動(dòng)過程中,D、E兩點(diǎn)始終在AC邊上(移動(dòng)開始時(shí)點(diǎn)D與點(diǎn)A重合).

(1)在△DEF沿AC方向移動(dòng)的過程中,劉衛(wèi)同學(xué)發(fā)現(xiàn):F、C兩點(diǎn)間的距離逐漸________

(填“不變”、“變大”或“變小”)

(2)劉衛(wèi)同學(xué)經(jīng)過進(jìn)一步地研究,編制了如下問題:

問題①:當(dāng)△DEF移動(dòng)至什么位置,即AD的長(zhǎng)為多少時(shí),F(xiàn)、C的連線與AB平行?

問題②:當(dāng)△DEF移動(dòng)至什么位置,即AD的長(zhǎng)為多少時(shí),以線段AD、FC、BC的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?

問題③:在△DEF的移動(dòng)過程中,是否存在某個(gè)位置,使得∠FCD=15°?如果存在,

求出AD的長(zhǎng)度;如果不存在,請(qǐng)說明理由.

請(qǐng)你分別完成上述三個(gè)問題的解答過程.

查看答案和解析>>


同步練習(xí)冊(cè)答案