已知數(shù)列 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=2,且點(diǎn)(Sn,Sn+1)在直線y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求證:{an}是等比數(shù)列;
(Ⅲ)記Tn為數(shù)列{Sn}的前n項(xiàng)和,求T10的值.

查看答案和解析>>

已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log3(a5+a7+a9)的值是( 。
A、-5
B、-
1
5
C、5
D、
1
5

查看答案和解析>>

已知數(shù)列an的前n項(xiàng)和Sn滿足條件2Sn=3(an-1),其中n∈N*
(1)求證:數(shù)列an成等比數(shù)列;
(2)設(shè)數(shù)列bn滿足bn=log3an.若 tn=
1bnbn+1
,求數(shù)列tn的前n項(xiàng)和.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)令cn=
n+1
n
anTn=c1+c2+…+cn
,試比較Tn
5n
2n+1
的大小,并予以證明.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和Sn,對(duì)一切正整數(shù)n,點(diǎn)(n,Sn)都在函數(shù)f(x)=2x+2-4的圖象上.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

 

一、選擇題

BBACA   DCBBB(分類分布求解)

二、填空題

11.{2,7}     12.840    13.1    14.2    15.(圓錐曲線定義)

16.解:(1)由

   (2)由余弦定理知:

    又

17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。

   (1)小張沒有被錄取的概率為:

   (2)小張被一個(gè)單位錄取的概率為

    被兩個(gè)單位同時(shí)錄取的概率為

    被三個(gè)單位錄取的概率為:所以分布列為:

ξ

0

1

2

3

P

    所以:

18.解:(1)

   

    所以:

19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

,

則在四邊形BB1D1D中(如圖),

  1. <b id="vlmif"></b>
    • 得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

      即D1O1⊥B1O

         (2)連接OD1,顯然:∠D1OB1為所求的角,

      容易計(jì)算:∠D1OB1

          所以:

      20.解:(1)曲線C的方程為

         (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

          當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

         代入    ①

          恒成立,

          設(shè)交點(diǎn)A,B的坐標(biāo)分別為

      ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

          ②        ③

       

             當(dāng)k=0時(shí),方程①的解為

         

             當(dāng)k=0時(shí),方程①的解為

          綜上,由

      21.解:(1)當(dāng)

          由

      0

      遞增

      極大值

      遞減

          所以

         (2)

             ①

          由

              ②

          由①②得:即得:

          與假設(shè)矛盾,所以成立

         (3)解法1:由(2)得:

         

          由(2)得:

      解法3:可用數(shù)學(xué)歸納法:步驟同解法2

      解法4:可考慮用不等式步驟略

       


      同步練習(xí)冊(cè)答案