(3)若△ABC三邊的長分別為...2m>0.n>0.且m≠n).試運(yùn)用構(gòu)圖法求出這個(gè)三角形的面積. 查看更多

 

題目列表(包括答案和解析)

問題背景:

    在△ABC中,AB、BC、AC三邊的長分別為、,求這個(gè)三角形的面積。小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。

    (1)請你將△ABC的面積直接填寫在橫線上。

思維拓展:

    (2)我們把上述求△ABC面積的方法叫做構(gòu)圖法。若△ABC三邊的長分別為a、2a、a(a>0),請利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積。

探索創(chuàng)新:

    (3)若△ABC三邊的長分別為、、、2m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這個(gè)三角形的面積。

查看答案和解析>>

問題背景:

    在△ABC中,AB、BC、AC三邊的長分別為、,求這個(gè)三角形的面積。小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。

    (1)請你將△ABC的面積直接填寫在橫線上。

思維拓展:

    (2)我們把上述求△ABC面積的方法叫做構(gòu)圖法。若△ABC三邊的長分別為a、2a、a(a>0),請利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積。

探索創(chuàng)新:

    (3)若△ABC三邊的長分別為、、2m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這個(gè)三角形的面積。

請?jiān)僮屑?xì)檢查一下,也許你會做的更好,考試成功的秘訣在于把會做的題做對,祝你成功!

查看答案和解析>>

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.我們把上述求△ABC面積的方法叫做構(gòu)圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
,
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當(dāng)a、b為何值時(shí)
a2+4
+
b2+25
有最小值,并求這個(gè)最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

問題:在△ABC中,AB、BC、AC三邊的長分別為
2
、
13
、
17
,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上
5
2
5
2

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
2
a、2
5
a、
26
a
(a>0),請利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積是:
3a2
3a2

(3)若△ABC三邊的長分別為
4m2+n2
、
16m2+n2
、2
m2+n2
(m>0,n>0,m≠n),請運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為:
4mn
4mn

查看答案和解析>>

現(xiàn)場學(xué)習(xí)題
問題背景:在△ABC中,AB、BC、AC三邊的長分別為
2
13
、
17
,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
2.5
2.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
2
a
、2
5
a
26
a
(a>0),請利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積是:
3a2
3a2

查看答案和解析>>


同步練習(xí)冊答案