說明:1.本例主要復(fù)習(xí)用等差.等比數(shù)列的定義證明一個(gè)數(shù)列為等差.等比數(shù)列.求數(shù)列通項(xiàng)與前項(xiàng)和.解決本題的關(guān)鍵在于由條件得出遞推公式. 查看更多

 

題目列表(包括答案和解析)

解析:本例主要是培養(yǎng)學(xué)生理解概念的程度,了解解決數(shù)學(xué)問題都需要算法

算法一:按照逐一相加的程序進(jìn)行.

第一步 計(jì)算1+2,得到3;

第二步 將第一步中的運(yùn)算結(jié)果3與3相加,得到6;

第三步 將第二步中的運(yùn)算結(jié)果6與4相加,得到10;

第四步 將第三步中的運(yùn)算結(jié)果10與5相加,得到15;

第五步 將第四步中的運(yùn)算結(jié)果15與6相加,得到21;

第六步 將第五步中的運(yùn)算結(jié)果21與7相加,得到28.

算法二:可以運(yùn)用公式1+2+3+…+n直接計(jì)算.

第一步 取n=7;

第二步 計(jì)算;

第三步 輸出運(yùn)算結(jié)果.

查看答案和解析>>

(1)已知:sinα+sinβ=
3
5
cosα+cosβ=
4
5
求cos(α-β)的值
(2)將(1)中已知條件進(jìn)行適當(dāng)改變,能否求出sin(α-β)的值,若能求出其值,若不能請(qǐng)說明理由.
(3)你能依此也創(chuàng)設(shè)一道類似題嗎?或?qū)⒈纠茝V到一般情形.

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且。

(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

解得,

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

解:(1)是奇函數(shù),。

,,………………2分

,又,,,

(2)任取,且

,………………6分

,

,,,

在(-1,1)上是增函數(shù)!8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

 

查看答案和解析>>

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案