解:(I)a2=a1+(-1)1=0, a3=a2+31=3.a4=a3+(-1)2=4 a5=a4+32=13, 所以.a3=3,a5=13. (II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1, a3-a1=3+(-1). 所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+-+(a3-a1) =(3k+3k-1+-+3)+[(-1)k+(-1)k-1+-+(-1)], 由此得a2k+1-a1=(3k-1)+[(-1)k-1], 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}滿足以下兩個條件:①點(an,an+1)在直線y=x+2上,②首項a1是方程3x2-4x+1=0的整數(shù)解,
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項和為Tn,解不等式Tn≤Sn

查看答案和解析>>

已知數(shù)列{an}滿足以下兩個條件:①點(an,an+1)在直線y=x+2上,②首項a1是方程3x2-4x+1=0的整數(shù)解,
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項和為Tn,解不等式Tn≤Sn

查看答案和解析>>

已知數(shù)列{an}滿足以下兩個條件:①點(an,an+1)在直線y=x+2上,②首項a1是方程3x2-4x+1=0的整數(shù)解,
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項和為Tn,解不等式Tn≤Sn

查看答案和解析>>

已知數(shù)列{an}滿足以下兩個條件:①點(an,an+1)在直線y=x+2上,②首項a1是方程3x2-4x+1=0的整數(shù)解,
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項和為Tn,解不等式Tn≤Sn

查看答案和解析>>

(2013•黃岡模擬)挪威數(shù)學(xué)家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如圖),利用它們的面積關(guān)系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:
a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn
則其中:(I)L3=
a1+a2+a3
a1+a2+a3
;(Ⅱ)Ln=
a1+a2+a3+…+an
a1+a2+a3+…+an

查看答案和解析>>


同步練習(xí)冊答案