∴A1C⊥平面BDC1.(Ⅱ)取EF的中點(diǎn)H.連結(jié)BH.CH.又E.F分別是AC.B1C的中點(diǎn).解法二:(Ⅰ)以點(diǎn)C為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則C.D,A1,C1,D1 可證.BD1⊥平面AB1C. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如圖甲,精英家教網(wǎng)在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(Ⅰ)求證:DC⊥平面ABC;
(Ⅱ)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.







(文科)如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(Ⅰ)求證:DC⊥平面ABC;
(Ⅱ)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(Ⅰ)求證:DC⊥平面ABC;
(Ⅱ)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

(2014•江門模擬)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,AC⊥BC,D是棱AA1的中點(diǎn),AA1=2AC=2BC=2a(a>0).
(1)證明:C1D⊥平面BDC;
(2)求三棱錐C-BC1D的體積.

查看答案和解析>>

(2005•朝陽區(qū)一模)直三棱柱ABC-A1B1C1中,AB⊥BC,E是A1C的中點(diǎn),ED⊥A1C且交AC于D,A1A=AB=
2
2
BC.
(Ⅰ)證明:B1C1∥平面A1BC;
(Ⅱ)證明:A1C⊥平面EDB;
(Ⅲ)求二面角B-A1C-A的余弦值.

查看答案和解析>>


同步練習(xí)冊答案