題目列表(包括答案和解析)
A. B. C. D.
電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數字組成,則一天中任一時刻的四個數字之和為23的概率為
A. B. C. D.
電子鐘一天顯示的時間是從00:00到23:59,每一時刻都由四個數字組成,則一天中任一時刻顯示的四個數字之和為23的概率為
A. B. C. D.
電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數字組成,則一天中任一時刻的四個數字之和為23的概率為
A. B. C. D.
電子鐘一天顯示的時間是從00:00到23:59,每一時刻都由四個數字組成,則一天中任一時刻顯示的四個數字之和為23的概率為 ( )
A. B. C. D.
一. 選擇題:本大題共12小題,每小題5分,共60分。
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
D
B
A
A
D
C
D
A
C
C
B
1..因所以對應的點在第四象限,
2..因,
3..令,則,
4..
5. . ,,…,
6.D. 函數
7. .由題知,垂足的軌跡為以焦距為直徑的圓,則
又,所以
8.. 常數項為
9. A.
10.. 解:①③④正確,②錯誤。易求得、到球心的距離分別為3、2,若兩弦交于,則⊥,中,有,矛盾。當、、共線時分別取最大值5最小值1。
11. . 一天顯示的時間總共有種,和為23總共有4種,故所求概率為.
12.. 解:當時,顯然不成立
當時,因當即時結論顯然成立;
當時只要即可
即
則
二. 填空題:本大題共4小題,每小題4分,共16分。
13. 14. 15. 16. B、D
13. 由已知得,則
14.
15.
16. 解:真命題的代號是: BD 。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經過點P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點P將露出水面。
三. 解答題:本大題共6小題,共74分。
17.解:由得
∴ ∴
∴,又
∴
由得
即 ∴
由正弦定理得
18.解:(1)的所有取值為
的所有取值為,
、的分布列分別為:
0.8
0.9
1.0
1.125
1.25
P
0.2
0.15
0.35
0.15
0.15
0.8
0.96
1.0
1.2
1.44
P
0.3
0.2
0.18
0.24
0.08
(2)令A、B分別表示方案一、方案二兩年后柑桔產量超過災前產量這一事件,
,
可見,方案二兩年后柑桔產量超過災前產量的概率更大
(3)令表示方案所帶來的效益,則
10
15
20
P
0.35
0.35
0.3
10
15
20
P
0.5
0.18
0.32
所以
可見,方案一所帶來的平均效益更大。
19.解:(1)設的公差為,的公比為,則為正整數,
,
依題意有①
由知為正有理數,故為的因子之一,
解①得
故
(2)
∴
20.解 :(1)證明:依題設,是的中位線,所以∥,
則∥平面,所以∥。
又是的中點,所以⊥,則⊥。
因為⊥,⊥,
所以⊥面,則⊥,
因此⊥面。
(2)作⊥于,連。因為⊥平面,
根據三垂線定理知,⊥,
就是二面角的平面角。
作⊥于,則∥,則是的中點,則。
設,由得,,解得,
在中,,則,。
所以,故二面角為。
解法二:(1)以直線分別為軸,建立空間直角坐標系,則
所以
所以
所以平面
由∥得∥,故:平面
(2)由已知設
由與共線得:存在有得
同理:
設是平面的一個法向量,
則令得
又是平面的一個法量
所以二面角的大小為
(3)由(2)知,,,平面的一個法向量為。
則。
則點到平面的距離為
21.證明:(1)設,由已知得到,且,,
從而,解得
因此的方程為:
同理的方程為:
又在上,所以,
即點都在直線上
又也在直線上,所以三點共線
(2)垂線的方程為:,
由得垂足,
設重心
所以 解得
由 可得即為重心所在曲線方程
22.解:、當時,,求得 ,
于是當時,;而當 時,.
即在中單調遞增,而在中單調遞減.
(2).對任意給定的,,由 ,
若令 ,則 … ① ,而 … ②
(一)、先證;因為,,,
又由 ,得 .
所以
.
(二)、再證;由①、②式中關于的對稱性,不妨設.則
(?)、當,則,所以,因為 ,
,此時.
(?)、當 …③,由①得 ,,,
因為 所以 … ④
同理得 … ⑤ ,于是 … ⑥
今證明 … ⑦, 因為 ,
只要證 ,即 ,也即 ,據③,此為顯然.
因此⑦得證.故由⑥得 .
綜上所述,對任何正數,皆有.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com